Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits

TL;DR: We learn continuous hierarchical mixtures as DAG-shaped PICs, and scale them using neural functional sharing techniques.

Gennaro Gala¹ Cassio de Campos¹ Antonio Vergari² Erik Quaeghebeur¹ *¹Eindhoven* TU, *²University of University of Edinburgh, UK Technology, NL*

Background – Probabilistic Integral Circuits

- PICs are symbolic computational graphs over possibly non-normalized distributions, and represent hierarchical continuous mixture models using input \setminus , product \otimes , sum \bigoplus and integral \bigcap units.
- Non-input units take one or more functions as input and output a single function
- Functions are 'attached' to input and integral units only

$$
X \text{ input variable}
$$
\n
$$
Z \text{ latent variable}
$$

$$
f_1(X_1, Z_1) \longrightarrow \bigcirc
$$
 $g_2(X_1, Z_2) = \int f_2(Z_2, z_1) f_1(X_1, z_1) dz_1$
 $f_2(Z_2, Z_1)$

Previous work & its limitation

- In previous work [1], PICs where **(i)** limited to tree-shaped structure and **(ii)** only used univariate dependencies between latent variables as to make training feasible
- **RQ**: *How can we build more intricate structures and allow for multivariate latent relationships while providing scalable training?*

$$
p(\mathbf{X}) = \int p(z_1) p(X_1|z_1) \int p(z_2|z_1) p(X_2|z_2) \int p(z_4|z_2) p(X_4|z_4) \mathrm{d}z_4 \mathrm{d}z_2 \int p(z_3|z_1) p(X_3|z_3) \mathrm{d}z_3 \mathrm{d}z_1
$$

[1] Gala et al. "Probabilistic integral circuits." *AISTATS* 2024.

A scalable pipeline to build & learn PICs

We present a pipeline that from arbitrary variable decompositions (1) builds DAG-shaped PICs (2), that we train by materializing them as tensorized circuits (aka *tensor networks*) called Quadrature-PCs (QPCs) (3), which we also fold to allow fast inference (4).

PIC2QPC: The Tucker layer case

- Zooming-in the QPC materialization, we show how the function f_4 can be discretized via numerical quadrature and used to parameterize a Tucker layer.
- The two gaussian blocks are just vectors of size K , which get multiplied via an outer product that is then matrixmultiplied by $\widetilde{\textbf{W}}$

Neural functional sharing for faster & cheaper QPC materialization

• Materializing QPCs is expensive when function evaluation is costly, so we present *neural functional sharing*: We parameterize all integral units with the same functional form and at the same depth using a multi-headed MLP.

Neural functional sharing makes PICs scale

PICs with functional sharing () - *unlike those w/o (▲) - need same resources as PCs (•), and use up to 99% less params!*

- QT-CP, QG-CP, QG-TK are tensorized circuit architectures, and K is the width of their layers.
- M is the size of the PIC MLPs.

QPCs are performant tractable probabilistic models

QPCs outperform standard PCs on distribution estimation benchmarks

Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits

Gennaro Gala, Cassio de Campos, Antonio Vergari, Erik Quaeghebeur

[1] Gala, Gennaro, et al. "Probabilistic integral circuits." *International Conference on Artificial Intelligence and Statistics*. PMLR, 2024.

[2] Loconte, Lorenzo, et al. "What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?." *arXiv preprint arXiv:2409.07953* (2024).

[3] Correia, Alvaro HC, et al. "Continuous mixtures of tractable probabilistic models." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 37. No. 6. 2023.