

DiMSUM E: Diffusion Mamba - A Scalable and Unified Spatial-Frequency Method for **Image Generation**

Trung Dao¹

Dimitris Metaxas³

Anh Tran¹

²Rutgers University *Equal contribution

³Cornell University ⁴New York University [†]Work done while at VinAI Research

Poster session: Wed 11 Dec 11 a.m. PST — 2 p.m. PST

We propose DiMSUM, a hybrid Mamba-Transformer diffusion model that synergistically leverages both spatial and frequency information for high-quality image synthesis.

Highlight

Requires less than a third training iterations than DiT and SiT.

Model	FID↓	Recall ↑	Params	#Iters × Bs	Epoch
Ours	8.61	0.67	460M	936K × 704	510
Ours-G	2.11	0.59	460M	$936K \times 704$	510
SSM-based					
DIFFUSSM-XL [65]	9.07	0.64	673M	2578K× 256	515
DIFFUSSM-XL-G	2.28	0.56	673M	$2578K \times 256$	515
UNet-based					
LDM-4 [51]	10.56	0.62	400M	$178K \times 1200$	200
LDM-4-G	3.60	0.48	400M	$178K \times 1200$	200
Transformer-based					0
DiT-L/2 [48]	23.33	-	458M	$400K \times 256$	80
DiT-XL/2	9.62	0.67	675M	$7000 \text{K} \times 256$	1.4K
DiT-XL/2-G	2.27	0.57	675M	$7000 \text{K} \times 256$	1.4K
SiT-XL/2 [44]	9.40	-	675M	$7000 \text{K} \times 256$	1.4K
SiT-XL/2-G	2.15	0.59	675M	$7000 \text{K} \times 256$	1.4K
GAN model					
BigGan-deep [4]	6.95	0.28	160M	-	
StyleGAN-XL [54]	2.30	0.53	166M	$25000 \text{K} \times 256$	4K

Conditional image generation on ImageNet-1K 256×256

Highlight

Model	FID↓	Recall↑	Params	#Iters × Bs	Epoch	
Ours	8.61	0.67	460M	936K × 704	510	
Ours-G	2.11	0.59	460M	$936K \times 704$	510	
SSM-based						
DIFFUSSM-XL [65]	9.07	0.64	673M	2578K× 256	515	
DIFFUSSM-XL-G	2.28	0.56	673M	$2578K \times 256$	515	
UNet-based						•
LDM-4 [51]	10.56	0.62	400M	$178 \text{K} \times 1200$	200	X
LDM-4-G	3.60	0.48	400M	$178K \times 1200$	200	-1
Transformer-based						
DiT-L/2 [48]	23.33	-	458M	$400 \text{K} \times 256$	80	ш.
DiT-XL/2	9.62	0.67	675M	$7000 \text{K} \times 256$	1.4K	
DiT-XL/2-G	2.27	0.57	675M	$7000 \text{K} \times 256$	1.4K	
SiT-XL/2 [44]	9.40	-	675M	$7000 \text{K} \times 256$	1.4K	
SiT-XL/2-G	2.15	0.59	675M	$7000 \text{K} \times 256$	1.4K	
GAN model						1 2
BigGan-deep [4]	6.95	0.28	160M	2-1		
StyleGAN-XL [54]	2.30	0.53	166M	$25000 \text{K} \times 256$	4K	

Conditional image generation on ImageNet-1K 256×256

Outperforms Zigma and other baselines in convergence rates.

Training convergence curves on CelebA

First, let's take a look at the wavelet transformation

Decompose image with wavelet transformation

Input Image

Wavelet level 1

Wavelet level 2

Perform scanning in frequency space

Left to Right

25

41

57

28

60

29

61

Better capture long-range frequencies within wavelet subband

Preserve the structure consistency of frequencies across subbands

*Each window corresponds to a whole wavelet subband, which means our method can ____

Integration of condition input into Mamba

Mamba has no attention mechanism like Transformers. How can we incorporate conditional context into its process?

The answer is really simple, it lies in the recurrent process of Mamba.

Integration of condition input into Mamba

Recurrent process of Mamba

$$\begin{cases} h_0 = \overline{B}x_0 \\ y_0 = Ch_0 \end{cases} \qquad \qquad \begin{cases} h_t = \overline{A}h_{t-1} + \overline{B}x_t \\ y_t = Ch_t \end{cases}$$

where \overline{A} , \overline{B} , C are the parameter triplet of Mamba

$$\begin{cases} h_0 = \overline{A}h_{-1} + \overline{B}x_0 \\ y_0 = Ch_0 \end{cases}$$

where $h_{-1} = Linear_D(c)$ is a linear projection of context input c

Now, let's dive into the architecture

DiMSUM Architecture

Diffusion Mamba

Only a single transformer block is added which is shared throughout the architecture.

#Params is still comparable with DiT-L (460M vs 458M)

Transformer block is inserted after every 4 DiM Block, resulting in only marginal compute overhead.

Diffusion Mamba

DiM Block design

We introduce two key components:

(1) Spatial-Frequency Mamba

Input features are split by channels, with one half assigned to the spatial branch and the other to the frequency branch.

> Spatial branch is just a Mamba Block with sweep scan

> > Frequency branch is our proposed Wavelet Mamba Block

Spatial-frequency Mamba

DiM Block design

We introduce two key components:

- (1) Spatial-Frequency Mamba
- (2) Cross-Attention fusion layer

Fusing spatial branch & frequency branch by simply swapping their queries

 32×32

Transformer Block

DiM Block

DiM Block

Transformer Block

DiM Block

...

Global

shared

weights

Cross-Attention fusion layer

DiM Block design

We introduce two key components:

- (1) Spatial-Frequency Mamba
- (2) Cross-Attention fusion layer

Fusing spatial branch & frequency branch by simply swapping their queries

 32×32

Transformer Block

DiM Block

DiM Block

Transformer Block

DIM Block

...

Global

shared

weights

Cross-Attention fusion layer

Ablation studies on CelebA

0.50

1.54

(a) Scanning						
Order	FID↓	Recall↑	iters/s ↑			
Conditional Mamba Only						
Bi	6.39	0.44	2.06			
Sweep-4	5.27	0.49	2.06			
Sweep-8	5.53	0.48	1.97			
Zigzag-8	6.17	0.46	1.97			
Jpeg-8	6.26	0.45	1.97			
Window	10.88	0.36	2.05			
Spatial-frequency Mamba						
Sweep-4 Sweep-4	5.41	0.49	1.54			

4.92

Sweep-4 | Window

(b) Components

	FID↓	Recall↑	Params	GFLOPs
Baseline	6.19	0.46	413M	51.65
+ Conditional Mamba	5.27	0.49	446M	51.69
+ Wavelet Mamba (w/ concat)	5.87	0.47	394M	56.54
+ Cross-Attention fusion layer	4.92	0.50	436M	62.42
+ Shared transformer block	4.65	0.52	459M	84.49

(c) Frequency types

	FID↓	Recall↑	Params	GFLOPs
DCT EinFFT	5.53 5.63	0.50 0.48	436M 371M	67.33 66.96
Wavelet	4.92	0.50	436M	62.42

Generated examples

Unconditional CelebA

Class-Conditional ImageNet

Sampling speed

Method	Time	MEM	Params	GFlops			
256 (latent size: 32 × 32)							
Ours-L/2	2.20s	2.42G	460M	84.49			
DiT-L/2	3.80s	2.30G	458M	80.74			
512 (latent size: 64×64)							
Ours-L/2	2.86s	2.46G	461M	337.48			
DiT-L/2	4.78s	2.34G	459M	361.14			

Thank you for watching!

Please scan this for more information