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Motivations
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Predictions

Decisions

Environment

Data

Make predictions or decisions 

on new, unseen data

◼Paradigm of stochastic optimization and machine learning

The training data and the 
testing data are i.i.d. 

Train models based 
on given datasets

The environment 
is static



Motivations
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Predictions

Decisions

Environment

Data

Make predictions or decisions 

on new, unseen data

◼Paradigm of machine learning and stochastic optimization

The training data and 

the testing data have 
different distributions

Train models based 
on old datasets

Alter the environment and further 
change the data distribution.

Inaccurate

Motivations



Performative Prediction
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➢ Initially formalized as performative prediction by [Perdomo et al., 2020]

➢Conventional Learning: ➢Performative Prediction:

• Data Z~D

• Goal: minimize risk

min [ ( ; )]Z Z



( )

minPR( ):= [ ( ; )]
Z

Z


 

• Goal: minimize performative risk

• Static distribution

• Data Z~D(θ)

• Decision-dependent distribution

➢ Represent the strategic responses of data distributions to the taken decisions by a   
decision-dependent distribution mapping Z~D(θ).

➢ Predictions guide decision-making and hence influence future data distributions.



Problem Formulation
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◼ Applications:

where θ-i := col(θ1 … θi-1, θi+1 … θn), θ := col(θi , θ-i),
Di (θ) is the data distribution of player i.

• Autonomous vehicular networks: multiple vehicles compete to select routes under constraints 

such as road capacities, traffic congestion, and travel costs. The route choices of each vehicle 

influence traffic patterns and consequently affect the travel times experienced by other vehicles.

• Networked Cournot games: traders compete to maximize profits under constraints like market 

capacities and inventory levels. The trading strategies of these participants impact market 

volatility and the distribution of asset prices, creating a dynamic pricing landscape.

◼ n-player decentralized noncooperative games with coupled

decision-dependent distributions:



Main Contributions
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◼ Algorithm Design: We develop a decentralized stochastic primal-dual algorithm for the 

efficient computing of the PSE and provide rigorous analysis to demonstrate its comparable 

convergence performance to the case without data performativity.  

◼ Problem Formulation: We formulate the problem of decentralized noncooperative 

game (1) with data performativity by coupled decision-dependent distributions.

◼ Nash Equilibrium: We examine the Nash equilibrium (NE) for the game (1) 

and establish sufficient conditions for its existence and uniqueness (E&U).

◼ Performative Stable Equilibrium: We examine the performative stable 

equilibrium (PSE) for the game (1) and establish sufficient conditions for its E&U.

◼ Distance Bound: We provide the first distance bound between the PSE and NE, 

which is challenging due to the absence of strong convexity on the joint cost function.



Nash Equilibrium

7

➢ If L1 =… = Ln = L, 1 =… = n = , and pij =1/n for all i, j. the above condition is simplified to 

 - 2L > 0, i.e.,  > 2L, which coincides with the condition for the E&U of the performative 

optimal (PO) point in the single agent PP problem (Miller et al., 2021). 

➢ Due to the presence of data performativity, i.e., i >0, the PP game (1) requires a more 

stringent condition for the E&U of NE.

◼ Theorem 1. (Existence and Uniqueness of NE, informal)

' '
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( ( ) ( )) .n
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If it is satisfied that
2 2
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•  is the monotone parameter of the fixed distribution counterpart of the game (1). 

• Li is the smoothness parameter of Ji()

• i is the sensitivity parameter of Di satisfying

• pij is the normalized influence of play j`s decision on Di ().

then, the PP game (1) is strongly monotone and admits a unique NE.



Performative Stable Equilibrium
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➢ If L1 =… = Ln = L, 1 =… = n = , and pij =1/n for all i, j. the above condition is 

simplified to  > L, which coincides with the condition for the E&U of performative 

stable (PS) point in the single agent PP problem (Perdomo et al., 2020). 

➢ The E&U condition of the PSE is weaker than that of the NE (>L V.S. >2L).

If it is satisfied that the PP game (1) admits a

unique PSE, which can be found by repeatedly minimizing the game (1) under fixed

data distribution induced by current decisions.
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◼ Theorem 2. (Existence and Uniqueness of PSE, informal)

◼ Definition of Performatively Stable Equilibrium (PSE):

The strategy profile θpse := col(θ1
pse… θn

pse) is a PSE point of the game (1) if it holds for 

all i[n] that 

• Θpse achieves the NE of the game (1) under fixed data distribution{Di (θipse)}i[n].
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Distance Between PSE and NE
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Define and

Suppose that holds. Then, for every PSE point and NE point, we have

the following relations:

where Gi is the Lipschitz parameter of Ji() for all i[n].

pse ne 2 2 pse ne 2 2
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➢ Larger performative strengths {1}i[n] widen the gap, while a bigger monotonicity 

parameter  reduces this gap.

➢ Comparable to the result in single agent PP case that ||θPO-θPS||2 < 2L/.

1 [ ]: maxn
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◼ Theorem 3. (Distance Between PSE and NE, informal)



Computation of PSE
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Convergence Analysis
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Define                                                     . Under standard assumptions, by 
running Algorithm 1 for T times of iterations, both the performative regret and 

the constraint violations of the game (1) is upper bounded by O(T3/4).

1 [ ]: maxn
i i i j n ijL p  = 

= −

➢ The performative effect slows down the convergence speed through 𝜇.

◼ Theorem 4. (Convergence of Algorithm 1, informal)

➢ The performance of Algorithm 1 matches the convergence order of the case 

without data performativity (Lu et al., 2020). 



Simulations on A Networked Cournot Game 
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• θij : the product's quantity that player i selling 

to the j-th market. Θi=col(θi1 ,…, θim ).
• cj : unit demand price of the market j.

cj :=j+j (σ𝑗=1
𝑛 θij)

1/j , j := j
0+

j
σ𝑗′=1
𝑛 j′

(σ𝑗=1
𝑛 θij), j

0 : random base component,

>0: performative strength, j : relative performative strength of market j.
• Bj : accommodating capacity of market j. 

◼ n firms selling a single commodity across m markets.



Simulations on A Networked Cournot Game 
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➢ Both Ri(t)/T and Rg(t)/T converge sublinearly to 0 as the iterations increase, verifying the 

effectiveness of Algorithm 1 for handling data performativity.

➢ The total revenue -σ𝑖=1
𝑛 Ri(t) of all firms at the PSE closely approaches that of the NE, 

verifying the effectiveness of the PSE solution. 
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◼ Performative regret:

◼ Constraint violation:
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Thank you for 

listening!


