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Aka. distance covariance.

Easy-to-estimate and popular dependency measure for M ě 2 random variables.

Many applications: feature selection, causal discovery, independence testing, clustering, sensitivity
analysis, uncertainty quantification, independent subspace analysis, . . .

Idea: Check if the joint distribution equals the product of its marginals in RKHS.

Formally (µk := mean embedding; P := joint measure; bM
m“1Pm := product of marginals):
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= (centered) covariance operator

›

›

›

Hk

“: HSICk pPq ,

with k “ bM
m“1km, X “ pXmq

M
m“1 P X “ ˆM

m“1Xm, and X „ P.

Hilbert-Schmidt independence criterion (HSIC)
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Question:

Can HSIC be estimated faster than O
´

1?
n

¯

for n samples?

Answer (our contribution):
On Rd : No!

Our contribution
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We measure the independence of X “ pXmq
M
m“1 P Rd “ ˆM

m“1Rdm , X „ P.

Theorem (main result; simplified)

P := any class of Borel probability measures containing the d-dimensional Gaussians, F̂n := any estimator of
HSIC based on n samples, k “ bM

m“1km with km : Rdm ˆ Rdm Ñ R continuous bounded shift-invariant
characteristic kernels. Then, there exists a constant c ą 0, such that for any n ě 2
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Notes:
Proof: construct adversarial distribution pair; show that it satisfies requirements of Le Cam’s method.
Gaussian case: c “

γ

2p2γ`1q
d
4 `1

ą 0; general case: from Bochner’s theorem (c ą 0).

Take-away: frequently-used HSIC estimators are minimax-optimal on Rd .

Formal statement
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HSIC cannot be estimated faster than O
´

1?
n

¯

on Rd .

Implies minimax-optimality of many existing estimators.

Open: lower bounds for HSIC estimation beyond Rd .

Questions/comments: Poster ID 95630.

Summary


