A Structure-Aware Framework for Learning Device Placements on Computation Graphs

Shukai Duan, Heng Ping, <u>Nikos Kanakaris</u>, Xiongye Xiao, Panagiotis Kyriakis, Nesreen K. Ahmed, Peiyu Zhang, Guixiang Ma, Mihai Capotă, Shahin Nazarian, Theodore L. Willke, Paul Bogdan

38th Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver Convention Center, Canada December 10-15 2024

Background

Computation graphs

- G = (V, E)
- labeled, unweighted, directed and acyclic (DAG)
- A node v represents an operation applied to the input data and is associated with an operation type
- An edge e = (v, u) represents the flow of data or dependency among node v and node u

Device placements

Given a list \mathcal{D} of the available devices, a placement $P = \{p_1, p_2, ..., p_n\}$ assigns each operation v of a computation graph G to a device $p \in \mathcal{D}$, where $p \in \{1, 2, ..., |\mathcal{D}|\}$.

Problem definition

Our goal is to assign each part of a computation graph to the most suitable device, such that the overall execution time during the inference of the model is minimized.

$$\theta^* = \arg\min_{\pi,\theta} I(G;\pi,\theta)$$

NeurIPS 2024 - Paper presentation

Related work

Problems of the existing approaches

- Not capturing the directed interactions among nodes
- Heuristics or simple methods for graph partitioning
- Requiring hyperparameter tuning
- Grouper- or encoder-placer architectures
- End-to-end training is not allowed
- Ignoring topological features

Related work

Problems of the existing approaches

- Not capturing the directed interactions among nodes
- Heuristics or simple methods for graph partitioning
- Requiring hyperparameter tuning
- Grouper- or encoder-placer architectures
- End-to-end training is not allowed
- Ignoring topological features

Our approach

- Local and global structural features
- Learning how to partition a graph
- Unspecified number of groups
- End-to-end learnable parameters
- Personalized partitioning
- Fusing encoder- and grouper-placer techniques

The architecture

Graph construction - Computation graph

Each computation graph is:

- labeled
- unweighted
- directed and acyclic (DAG)
- Each node:
 - corresponds to an operation
 - has an associated operation type

- Each edge:
 - links two nodes
 - represents the flow of data
 - or a dependency among two operations

Feature extraction

- Four categories of features:
 - Local structural features
 - Global structural features
 - Positional features
 - Node-specific features

- Examples of features:
 - in-degree and out-degree
 - operation type embedding
 - fractal dimension of nodes
 - positional encoding
 - node id or node embedding

Learning embeddings and groups jointly and device placement

- Learns embeddings and groups jointly
- Further enrich node features
- Partitions a computation graph
- Unspecified number of groups
- Grouper-placer and encoder-placer

- Graph parsing network
 - Graph and node encoding
 - Edge score matrix calculation
 - Graph partitioning and pooling
- Original nodes to the available devices

Heterogeneous execution

- Intel Server
- Intel OpenVINO toolkit
- Reinforcement learning
- Policy learning
- Inference time

- REINFORCE
- Reward aware of execution time

•
$$r_{P'}(G') = \frac{1}{I_{P'}(G')}$$

End-to-end parameter update

	Ince	ption-V3	R	esNet	BERT	
	$I_P(G)$	$Speedup\ \%$	$I_P(G)$	$Speedup\ \%$	$I_P(G)$	$Speedup\ \%$
CPU-only	0.0128	0	0.0160	0	0.00638	0
GPU-only	0.0120	6.25	0.00781	51.2	0.00277	56.5
OpenVINO-CPU	0.0128	0	0.0234	-46.3	0.00657	-2.98
OpenVINO-GPU	0.0138	-7.81	0.00876	45.3	0.00284	55.5
Placeto	0.0116	9.38	0.00932	41.8	0.00651	-2.04
RNN-based	0.0128	0	0.00875	45.3	OOM	OOM
HSDAG	0.0105	17.9	0.00766	52.1	0.00267	58.2

	Inception-V3		ResNet		BERT	
	$I_P(G)$	$Speedup\ \%$	$I_P(G)$	$Speedup\ \%$	$I_P(G)$	$Speedup\ \%$
CPU-only	0.0128	0	0.0160	0	0.00638	0
Original	0.0105	17.9	0.00766	52.1	0.00267	58.2
w/o output shape	0.0117	8.59	0.00768	52.0	0.00278	56.4
w/o node ID	0.0117	8.59	0.00768	52.0	0.00279	56.4
w/o graph structural features	0.0109	14.8	0.00766	52.1	0.00268	58.2

Code:

Paper:

