

Adversarial Schrödinger Bridge Matching

Nikita Gushchin¹*,[∗]* **Daniil Selikhanovych**¹*,[∗]* **Sergei Kholkin**¹*,[∗]* **Evgeny Burnaev**¹*,*² **Alexander Korotin**¹*,*² ¹Skolkovo Institute of Science and Technology ² Artificial Intelligence Research Institute *∗Nikita Gushchin, Daniil Selikhanovych and Sergei Kholkin contributed equally*

2024

Unpaired Domain Translation: The Problem which Motivated the Study¹

The task: learn (from samples) a *generalizable translation* map between the two given data domains.

Example: Style Translation

 1 Jun-Yan Zhu et al. (2017). "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: *Proceedings of the IEEE international conference on computer vision*, pp. 2223–2232.

Schrödinger Bridge problem²

The Schrödinger Bridge problem

For two continuous distributions p_0 and p_1 on \mathbb{R}^D , the Schrödinger Bridge problem is:

 $\inf_{\mathcal{T}\in\mathcal{F}(p_0,p_1)}$ KL(\mathcal{T} *|W*^{ϵ}).

Here $\mathcal{F}(p_0, p_1)$ are stochastic processes with marginals p_0 , p_1 at $t = 0$ and $t = 1$.

Here W^{ϵ} is a Wiener process with the variance ϵ , i.e., it is a stochastic process with the stochastic differential ϵ equation (SDE): $dX_t = \sqrt{\epsilon} dW_t$.

Figure 1: Wiener process with $\epsilon = 1$.

²Erwin Schrödinger (1931). *Über die umkehrung der naturgesetze*. Verlag der Akademie der Wissenschaften in Kommission bei Walter De Gruyter u ….

Let ${\cal F}$ denote the set of all stochastic processes in ${\mathbb R}^D$ for $t\in[0,1]$ with continuous trajectories $\{x_t\}_{t\in [0,1]}$. We also denote Brownian Bridge $\mathcal{W}^{\epsilon}_{|x_0,x_1}$ as the \mathcal{W}^{ϵ} conditioned on x_0,x_1 at $t=0,1$. **Reciprocal processes**. Let *R ⊂ F* denote the subset of **reciprocal** processes, i.e., those processes can be represented as mixtures of Brownian bridges:

$$
\mathcal{T}\in\mathcal{R}\qquad\Leftrightarrow\qquad\exists\pi=\pi^{\mathcal{T}}\in\mathcal{P}(\mathbb{R}^D\times\mathbb{R}^D)\text{ s.t. }\mathcal{T}=\mathcal{T}_\pi\stackrel{\text{def}}{=}\int W^{\varepsilon}_{|x_0,x_1}\pi^{\mathcal{T}}(x_0,x_1)dx_0dx_1.
$$

Markov Processes. Let *M ⊂ F* denote the subset of **Markovian** processes, i.e., $T \in \mathcal{M}$ \Leftrightarrow $\forall N > 1, 0 \le t_1 < \cdots < t_N \le 1 : p^T(x_{t_N}|x_{t_{N-1}}\ldots,x_1) = p^T(x_{t_N}|x_{t_{N-1}}).$ Schrödinger Bridge *T ∗* is the only process starting at *p*⁰ and ending at *p*¹ that is

both Markovian and reciprocal.

³Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

Bridge matching

Reciprocal projection

• Defined for any process *T ∈ F*:

 $proj_{\mathcal{R}}(\mathcal{T}) \stackrel{\text{def}}{=} argmin_{R \in \mathcal{R}} \mathsf{KL}(\mathcal{T} \| R)$

• Yields a mixture of Brownian bridges:

∫ *W^ϵ |x*0*,x*¹ *π T* (*x*0*, x*1)*dx*0*dx*¹

Markovian projection

• Defined for a *reciprocal* process *T^π ∈R*:

 $\mathsf{proj}_{\mathcal{M}}(\mathcal{T}_{\pi}) \stackrel{\text{def}}{=} \mathsf{argmin}_{M \in \mathcal{M}} \mathsf{KL}(\mathcal{T}_{\pi} \| M)$

• Yields a **diffusion** with the SDE

$$
dx_t = g_{\mathcal{M}}(x_t, t)dt + \sqrt{\epsilon}dW_t, \qquad x_0 \sim p_0.
$$

Bridge matching = combination of Reciprocal and Markovian Projections

Iterative Markovian Fitting⁴ **(Iterative Diffusion Bridge Matching)**

Alternating Markovian and Reciprocal projections is called the **Iterative Markovian Fitting** (IMF) procedure. Starting from a reciprocal process $T_0 = \int W^{\epsilon}_{|x_0, x_1} d\pi(x_0, x_1)$ induced by some initial plan $\pi(x_0, x_1)$, one performs iterative updates

$$
T^{2n+1} = \text{proj}_{\mathcal{M}}(T^{2n}), T^{2n+2} = \text{proj}_{\mathcal{R}}(T^{2n+1})
$$

 $\{T^n\}_{n=1}^\infty$ converges to the SB T^* : $\lim_{n\to+\infty}$ KL $(T^n \| T^*) = 0$.

⁴Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

Learning **continuous-time** SDEs in IMF is non-trivial and, unfortunately, leads to **long inference** due to the necessity to use many steps of numerical solvers. In the DSBM method⁵ the number of sampling steps is 100 , which is a lot.

⁵Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

This paper addresses the above-mentioned limitation of the existing IMF framework by introducing a novel approach to learn the Schrödinger Bridge:

- 1. **Theory I.** We introduce a Discrete Iterative Markovian Fitting **(D-IMF)** procedure, which innovatively applies **discrete** Markovian projection to solve the SB problem without relying on SDE.
- 2. **Theory II.** We derive closed-form update formulas for the D-IMF procedure when dealing with high-dimensional Gaussian distributions.
- 3. **Practice.** For general data distributions available by samples, we propose an algorithm **(ASBM)** to implement the discrete Markovian projection and our D-IMF procedure in practice. Our algorithm is based on adversarial learning and DDGAN. Our learned SB model uses just 4 evaluation steps for inference instead of hundreds of the basic IMF.

Discrete Markovian and reciprocal stochastic processes

We define the **discrete reciprocal processes** using the finite-time projection of $W_{[x_0,x_1]}^{\epsilon}$: $p^{W^{\epsilon}}(x_{t_1},\ldots,x_{t_N}|x_0,x_1)=\prod_{n=1}^Np^{W^{\epsilon}}(x_{t_n}|x_{t_{n-1}},x_1),$ *n*=1 $\rho^{\mathcal{W}^{\varepsilon}}(x_{t_n}|x_{t_{n-1}},x_1)=\mathcal{N}\left(x_{t_n}|x_{t_{n-1}}+\frac{t_n-t_{n-1}}{1-t_{n-1}}\right)$ $\frac{(t_n-t_{n-1})}{1-t_{n-1}}(x_1-x_{t_{n-1}}), \epsilon \frac{(t_n-t_{n-1})(1-t_n)}{1-t_{n-1}}$ 1*−tn−*¹) *.*

We introduce the **reciprocal projection** $proj_R(q)$ as a process with the joint distribution: $[proj_{\mathcal{R}}(q)](x_0, x_{t_1},...,x_{t_N}, x_1) = p^{W^{\epsilon}}(x_{t_1},...,x_{t_N}|x_0, x_1)q(x_0, x_1).$

The **discrete Markovian projection** of *q* is a process proj $\mathcal{M}(q)$ with the joint distribution: $[proj_{\mathcal{M}(q)](x₀, x_{t₁},..., x_{t_N}, x₁) = q(x₀) \prod_{n=1}^{N+1} q(x_{t_n}|x_{t_{n-1}}).$

D-IMF procedure starts from any discrete Brownian mixture and constructs the following sequence of discrete stochastic processes: $q^{2l+1} = \text{proj}_{\mathcal{M}}(q^{2l}), \quad q^{2l+2} = \text{proj}_{\mathcal{R}}(q^{2l+1}).$

Theorem (Discrete Markovian and reciprocal process is the solution of static SB)

Consider any discrete process q, which is simultaneously reciprocal and Markovian, and has marginals $p_0(x_0)$ *and* $p_1(x_1)$:

$$
q(x_0, x_{t_1}, \ldots, x_{t_N}, x_1) = p^{W^{\varepsilon}}(x_{t_1}, \ldots, x_{t_N} | x_0, x_1) q(x_0, x_1) = q(x_0) \prod_{n=1}^{N+1} q(x_{t_n} | x_{t_{n-1}}).
$$

Then $q(x_0, x_{t_1},..., x_{t_N}, x_1) = p^{T^*}(x_0, x_{t_1},..., x_{t_N}, x_1)$, *i.e.*, *it is the finite-dimensional projection of the SB to the considered times.*

Theorem (D-IMF procedure converges to the the Schrödinger Bridge)

Under mild assumptions, the sequence q^{*l*} constructed by our D-IMF procedure converges in *KL to p^T ∗ . Namely, we have*

$$
\text{lim}_{I\rightarrow\infty} \text{KL}\left(q^I \| p^{T^*}\right) = 0, \quad \text{and} \quad \text{lim}_{I\rightarrow\infty} \text{KL}\left(q^I(x_0,x_1) \| p^{T^*}(x_0,x_1)\right) = 0.
$$

To implement D-IMF in practice we need:

1. **Implementation of the discrete reciprocal projection.** To sample from reciprocal projection

 $[proj_{\mathcal{R}}(q)](x_0, x_{t_1},...,x_{t_N}, x_1) = p^{W^{\varepsilon}}(x_{t_1},...,x_{t_N}|x_0, x_1)q(x_0, x_1)$

it is enough to sample first a pair $(x_0, x_1) \sim q(x_0, x_1)$ and then sample intermediate points x_{t_1}, \ldots, x_{t_N} from the Brownian Bridge $p^{\mathcal{W}^{\epsilon}}(x_{t_1}, \ldots, x_{t_N} | x_0, x_1)$.

2. **Implementation of the discrete Markovian projection via DD-GAN.** To find the Markovian projection of a reciprocal process

 $[proj_{\mathcal{M}}(q)](x_0, x_{t_1},...,x_{t_N}, x_1) = q(x_0) \prod_{n=1}^{N+1} q(x_{t_n}|x_{t_{n-1}}),$

one just needs to estimate the transition probabilities $\{q(x_{t_n}|x_{t_{n-1}})\}_{n=1}^{N+1}$ and use the starting marginal $q(x_0) = p_0(x_0)$. Similarly to DDGAN, we parametrize all these distributions as $\{q_\theta(x_{t_n}|x_{t_{n-1}})\}_{n=1}^{N+1}$ via a time-conditioned generator $G_\theta(x_{t_{n-1}},z,t_{n-1})$. For a given $x_{t_{n-1}}$ sample $x_{t_n} \sim q_\theta(x_{t_n}|x_{t_{n-1}})$ is obtained by first sampling x_1 from the G_θ and then using sampling from the Brownian Bridge $p^{\mathcal{W}^{\varepsilon}}(x_{t_n}|x_{t_{n-1}},x_1)$.

We use D_{adv} as a non-saturating GAN loss. To optimize this loss, an additional conditional discriminator *D*(x ^{*tn*−1</sub>, x ^{*tn*</sub>^{*,*}*tn*−1) is needed. In the}} DDGAN the distribution $q(x_{in}|x_0, x_1)$ is used from DDPM and **it is the main difference between our discrete**

Markovian projection and DDGAN. We minimize over *θ* the following loss: *N* ∑ +1 $\sum_{n=1}^{N-1} \mathbb{E}_{q(x_{t_{n-1}})} D_{\text{adv}}(q(x_{t_n}|x_{t_{n-1}})||q_{\theta}(x_{t_n}|x_{t_{n-1}})).$

⁶Zhisheng Xiao, Karsten Kreis, and Arash Vahdat (2022). "Tackling the Generative Learning Trilemma with Denoising Diffusion GANs". In: *International Conference on Learning Representations*.

Evaluation

To test our approach on real data, we consider the unpaired image-to-image translation setup of learning *male → female* faces of Celeba dataset:

- **Train-test split**. We use 10% of *male* and *female* images as the test set for evaluation.
- **Hyperparameters**. We train our ASBM based on the D-IMF procedure with $\epsilon = 1$ and $\epsilon = 10$. Following the best practices of DD-GAN, we use $N = 3$, intermediate times $t_1 = \frac{1}{4}$, $t_2 = \frac{2}{4}$, $t_3 = \frac{3}{4}$ and $K = 5$ outer iterations of D-IMF.
- **Evaluation protocol**. We provide qualitative results and the FID metric on the test set.
- **Comparison**. We focus our comparison on the DSBM algorithm⁷ since it is closely related to our method. We train DSBM following the authors and use $NFE = 100$. As well as for ASBM, we use 5 outer iterations of IMF for continuous processes.
- We use 42M and 38M parameters of neural networks for ASBM and DSBM respectively.

⁷Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

Results on Celeba-128, *male → female*

(a) $x \sim p_0$ **(b)** ASBM (ours), $\epsilon = 1$ (lower diversity) $FID = 16.08$, $NFE = 4$.

(c) DSBM, $\epsilon = 1$ (lower diversity) $FID = 37.8$, $NFE = 100$.

Our algorithm is scalable and provides better results while using only 4 evaluation steps.

Results on Celeba-128, *male → female*

DSBM experiences a notable increase in FID with $\epsilon = 10$. We conjecture that this is due to the FID unstability w.r.t. slightly noisy images from integration of noisy trajectories.

Results on Celeba-128, *female → male*

Similar to DSBM, our algorithm trains both forward and backward models. The backward model also achieves good results.

Adversarial Schrödinger Bridge Matching (ASBM)

A novel Discrete-time IMF procedure in which learning of stochastic processes is replaced by learning just a few transition probabilities in discrete time.

<https://github.com/Daniil-Selikhanovych/ASBM>