

Adversarial Schrödinger Bridge Matching

Nikita Gushchin^{1,*} Daniil Selikhanovych^{1,*} Sergei Kholkin^{1,*} Evgeny Burnaev^{1,2} Alexander Korotin^{1,2} ¹Skolkovo Institute of Science and Technology ²Artificial Intelligence Research Institute * Nikita Gushchin, Daniil Selikhanovych and Sergei Kholkin contributed equally

Unpaired Domain Translation: The Problem which Motivated the Study¹

The task: learn (from samples) a generalizable translation map between the two given data domains.

Example: Style Translation

¹Jun-Yan Zhu et al. (2017). "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: *Proceedings of the IEEE international conference on computer vision*, pp. 2223–2232.

Schrödinger Bridge problem²

The Schrödinger Bridge problem

For two continuous distributions p_0 and p_1 on \mathbb{R}^D , the Schrödinger Bridge problem is:

 $\inf_{T\in\mathcal{F}(\rho_0,\rho_1)}\mathsf{KL}(T||W^{\epsilon}).$

Here $\mathcal{F}(p_0, p_1)$ are stochastic processes with marginals p_0 , p_1 at t = 0 and t = 1.

Here W^{ϵ} is a Wiener process with the variance ϵ , i.e., it is a stochastic process with the stochastic differential equation (SDE): $dX_t = \sqrt{\epsilon} dW_t$.

Figure 1: Wiener process with $\epsilon = 1$.

²Erwin Schrödinger (1931). *Über die umkehrung der naturgesetze.* Verlag der Akademie der Wissenschaften in Kommission bei Walter De Gruyter u

Let \mathcal{F} denote the set of all stochastic processes in \mathbb{R}^D for $t \in [0, 1]$ with continuous trajectories $\{x_t\}_{t \in [0,1]}$. We also denote Brownian Bridge $W_{|x_0,x_1}^{\epsilon}$ as the W^{ϵ} conditioned on x_0, x_1 at t = 0, 1. **Reciprocal processes**. Let $\mathcal{R} \subset \mathcal{F}$ denote the subset of **reciprocal** processes, i.e., those processes can be represented as mixtures of Brownian bridges:

$$T \in \mathcal{R} \qquad \Leftrightarrow \qquad \exists \pi = \pi^T \in \mathcal{P}(\mathbb{R}^D \times \mathbb{R}^D) \text{ s.t. } T = T_\pi \stackrel{\text{def}}{=} \int W^{\epsilon}_{|x_0, x_1} \pi^T(x_0, x_1) dx_0 dx_1.$$

 $\begin{array}{ll} \underline{\textbf{Markov Processes}} & \text{Let } \mathcal{M} \subset \mathcal{F} \text{ denote the subset of } \textbf{Markovian processes, i.e.,} \\ \overline{\mathcal{T} \in \mathcal{M}} & \Leftrightarrow & \forall N > 1, \ 0 \leq t_1 < \cdots < t_N \leq 1: \ p^T(x_{t_N} | x_{t_{N-1}} \dots, x_1) = p^T(x_{t_N} | x_{t_{N-1}}). \\ \text{Schrödinger Bridge } \overline{\mathcal{T}}^* \text{ is the only process starting at } p_0 \text{ and ending at } p_1 \text{ that is} \end{array}$

both Markovian and reciprocal.

³Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems.*

Bridge matching

Reciprocal projection

• Defined for any process $T \in \mathcal{F}$:

 $\operatorname{proj}_{\mathcal{R}}(T) \stackrel{\text{def}}{=} \operatorname{argmin}_{R \in \mathcal{R}} \operatorname{KL}(T || R)$

• Yields a mixture of Brownian bridges:

 $\int W^{\epsilon}_{|x_0,x_1}\pi^{T}(x_0,x_1)dx_0dx_1$

Markovian projection

• Defined for a *reciprocal* process $T_{\pi} \in \mathcal{R}$:

 $\operatorname{\mathsf{proj}}_{\mathcal{M}}(\mathcal{T}_{\pi}) \stackrel{\mathsf{def}}{=} \operatorname{\mathsf{argmin}}_{\mathcal{M} \in \mathcal{M}} \mathsf{KL}(\mathcal{T}_{\pi} \| \mathcal{M})$

• Yields a diffusion with the SDE

$$dx_t = g_{\mathcal{M}}(x_t, t)dt + \sqrt{\epsilon}dW_t, \qquad x_0 \sim p_0.$$

Bridge matching = combination of Reciprocal and Markovian Projections

Iterative Markovian Fitting⁴ (Iterative Diffusion Bridge Matching)

Alternating Markovian and Reciprocal projections is called the **Iterative Markovian Fitting** (IMF) procedure. Starting from a reciprocal process $T_0 = \int W_{|x_0,x_1}^{\epsilon} d\pi(x_0, x_1)$ induced by some initial plan $\pi(x_0, x_1)$, one performs iterative updates

$$T^{2n+1} = \operatorname{proj}_{\mathcal{M}}(T^{2n}), T^{2n+2} = \operatorname{proj}_{\mathcal{R}}(T^{2n+1})$$

 $\{ T^n \}_{n=1}^{\infty} \text{ converges to the SB } T^*: \\ \lim_{n \to +\infty} \mathsf{KL}(T^n || T^*) = 0.$

⁴Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

Learning **continuous-time** SDEs in IMF is non-trivial and, unfortunately, leads to **long inference** due to the necessity to use many steps of numerical solvers. In the DSBM method⁵ the number of sampling steps is 100, which is a lot.

⁵Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems.*

This paper addresses the above-mentioned limitation of the existing IMF framework by introducing a novel approach to learn the Schrödinger Bridge:

- 1. **Theory I.** We introduce a Discrete Iterative Markovian Fitting **(D-IMF)** procedure, which innovatively applies **discrete** Markovian projection to solve the SB problem without relying on SDE.
- 2. **Theory II.** We derive closed-form update formulas for the D-IMF procedure when dealing with high-dimensional Gaussian distributions.
- 3. **Practice.** For general data distributions available by samples, we propose an algorithm **(ASBM)** to implement the discrete Markovian projection and our D-IMF procedure in practice. Our algorithm is based on adversarial learning and DDGAN. Our learned SB model uses just 4 evaluation steps for inference instead of hundreds of the basic IMF.

Discrete Markovian and reciprocal stochastic processes

We define the **discrete reciprocal processes** using the finite-time projection of $W_{|x_0,x_1}^{\epsilon}$: $p^{W^{\epsilon}}(x_{t_1}, \dots, x_{t_N} | x_0, x_1) = \prod_{n=1}^{N} p^{W^{\epsilon}}(x_{t_n} | x_{t_{n-1}}, x_1),$ $p^{W^{\epsilon}}(x_{t_n} | x_{t_{n-1}}, x_1) = \mathcal{N}\left(x_{t_n} | x_{t_{n-1}} + \frac{t_n - t_{n-1}}{1 - t_{n-1}}(x_1 - x_{t_{n-1}}), \epsilon \frac{(t_n - t_{n-1})(1 - t_n)}{1 - t_{n-1}}\right).$

We introduce the **reciprocal projection** $\operatorname{proj}_{\mathcal{R}}(q)$ as a process with the joint distribution: $[\operatorname{proj}_{\mathcal{R}}(q)](x_0, x_{t_1}, \dots, x_{t_N}, x_1) = \rho^{W^e}(x_{t_1}, \dots, x_{t_N}|x_0, x_1)q(x_0, x_1).$

The **discrete Markovian projection** of *q* is a process $\operatorname{proj}_{\mathcal{M}}(q)$ with the joint distribution: $[\operatorname{proj}_{\mathcal{M}}(q)](x_0, x_{t_1}, ..., x_{t_N}, x_1) = q(x_0) \prod_{n=1}^{N+1} q(x_{t_n} | x_{t_{n-1}}).$

D-IMF procedure starts from any discrete Brownian mixture and constructs the following sequence of discrete stochastic processes: $q^{2l+1} = \text{proj}_{\mathcal{M}}(q^{2l}), \quad q^{2l+2} = \text{proj}_{\mathcal{R}}(q^{2l+1}).$

Theorem (Discrete Markovian and reciprocal process is the solution of static SB)

Consider any discrete process q, which is simultaneously reciprocal and Markovian, and has marginals $p_0(x_0)$ and $p_1(x_1)$:

$$q(x_0, x_{t_1}, \ldots, x_{t_N}, x_1) = p^{W^{\epsilon}}(x_{t_1}, \ldots, x_{t_N} | x_0, x_1)q(x_0, x_1) = q(x_0)\prod_{n=1}^{N+1} q(x_{t_n} | x_{t_{n-1}})$$

Then $q(x_0, x_{t_1}, \ldots, x_{t_N}, x_1) = p^{T^*}(x_0, x_{t_1}, \ldots, x_{t_N}, x_1)$, *i.e.*, *it is the finite-dimensional projection of the SB to the considered times.*

Theorem (D-IMF procedure converges to the the Schrödinger Bridge)

Under mild assumptions, the sequence q^l constructed by our D-IMF procedure converges in KL to p^{T^*} . Namely, we have

$$\lim_{l\to\infty} \mathsf{KL}\left(q^l \| p^{\mathcal{T}^*}\right) = 0, \qquad \text{and} \qquad \lim_{l\to\infty} \mathsf{KL}\left(q^l(x_0, x_1) \| p^{\mathcal{T}^*}(x_0, x_1)\right) = 0.$$

To implement D-IMF in practice we need:

1. Implementation of the discrete reciprocal projection. To sample from reciprocal projection

$$[\operatorname{proj}_{\mathcal{R}}(q)](x_0, x_{t_1}, \dots, x_{t_N}, x_1) = p^{W^{\varepsilon}}(x_{t_1}, \dots, x_{t_N} | x_0, x_1)q(x_0, x_1)$$

it is enough to sample first a pair $(x_0, x_1) \sim q(x_0, x_1)$ and then sample intermediate points x_{t_1}, \ldots, x_{t_N} from the Brownian Bridge $p^{W^e}(x_{t_1}, \ldots, x_{t_N} | x_0, x_1)$.

2. Implementation of the discrete Markovian projection via DD-GAN. To find the Markovian projection of a reciprocal process

$$\left[\operatorname{proj}_{\mathcal{M}}(q)\right](x_0, x_{t_1}, ..., x_{t_N}, x_1) = q(x_0) \prod_{n=1}^{N+1} q(x_{t_n} | x_{t_{n-1}}),$$

one just needs to estimate the transition probabilities $\{q(x_{t_n}|x_{t_{n-1}})\}_{n=1}^{N+1}$ and use the starting marginal $q(x_0) = p_0(x_0)$. Similarly to DDGAN, we parametrize all these distributions as $\{q_{\theta}(x_{t_n}|x_{t_{n-1}})\}_{n=1}^{N+1}$ via a time-conditioned generator $G_{\theta}(x_{t_{n-1}}, z, t_{n-1})$. For a given $x_{t_{n-1}}$ sample $x_{t_n} \sim q_{\theta}(x_{t_n}|x_{t_{n-1}})$ is obtained by first sampling x_1 from the G_{θ} and then using sampling from the Brownian Bridge $p^{W^{\varepsilon}}(x_{t_n}|x_{t_{n-1}}, x_1)$.

We use D_{adv} as a non-saturating GAN loss. To optimize this loss, an additional conditional discriminator $D(x_{t_{n-1}}, x_{t_n}, t_{n-1})$ is needed. In the DDGAN the distribution $q(x_{in}|x_0, x_1)$ is used from DDPM and it is the main difference between our discrete Markovian projection and DDGAN.

We minimize over θ the following loss: $\sum_{n=1}^{N+1} \mathbb{E}_{q(x_{t_{n-1}})} D_{\mathsf{adv}} (q(x_{t_n}|x_{t_{n-1}})||q_{\theta}(x_{t_n}|x_{t_{n-1}})).$

⁶Zhisheng Xiao, Karsten Kreis, and Arash Vahdat (2022). "Tackling the Generative Learning Trilemma with Denoising Diffusion GANs". In: *International Conference on Learning Representations*.

Evaluation

To test our approach on real data, we consider the unpaired image-to-image translation setup of learning $male \rightarrow female$ faces of Celeba dataset:

- Train-test split. We use 10% of *male* and *female* images as the test set for evaluation.
- Hyperparameters. We train our ASBM based on the D-IMF procedure with $\epsilon = 1$ and $\epsilon = 10$. Following the best practices of DD-GAN, we use N = 3, intermediate times $t_1 = \frac{1}{4}, t_2 = \frac{2}{4}, t_3 = \frac{3}{4}$ and K = 5 outer iterations of D-IMF.
- Evaluation protocol. We provide qualitative results and the FID metric on the test set.
- **Comparison**. We focus our comparison on the DSBM algorithm⁷ since it is closely related to our method. We train DSBM following the authors and use NFE = 100. As well as for ASBM, we use 5 outer iterations of IMF for continuous processes.
- We use 42M and 38M parameters of neural networks for ASBM and DSBM respectively.

⁷Yuyang Shi et al. (2023). "Diffusion Schrödinger Bridge Matching". In: *Thirty-seventh Conference on Neural Information Processing Systems.*

Results on Celeba-128, male \rightarrow female

Our algorithm is scalable and provides better results while using only 4 evaluation steps.

Results on Celeba-128, male \rightarrow female

(a) $x \sim p_0$ (b) ASBM (ours), $\epsilon = 10$ (higher diversity) FID = 17.44, NFE = 4. (c) DSBM, $\epsilon = 10$ (higher diversity) FID = 89.19, NFE = 100.

DSBM experiences a notable increase in FID with $\epsilon = 10$. We conjecture that this is due to the FID unstability w.r.t. slightly noisy images from integration of noisy trajectories.

Results on Celeba-128, *female* \rightarrow *male*

Similar to DSBM, our algorithm trains both forward and backward models. The backward model also achieves good results.

Adversarial Schrödinger Bridge Matching (ASBM)

A novel Discrete-time IMF procedure in which learning of stochastic processes is replaced by learning just a few transition probabilities in discrete time.

https://github.com/Daniil-Selikhanovych/ASBM