Deqing Fu Tian-Qi Chen Robin Jia Vatsal Sharan

Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression

How do Models do In-Context Learning?

Transformers Learn In-Context by Gradient Descent

Johannes von Oswald¹² Eyvind Niklasson² Ettore Randazzo² João Sacramento¹ Alexander Mordvintsev² Andrey Zhmoginov² Max Vladymyrov²

Transformers learn to implement preconditioned gradient descent for in-context learning

Kwangjun Ahn^{*} **MIT EECS/LIDS** kjahn@mit.edu

Xiang Cheng* MIT LIDS chengx@mit.edu Hadi Daneshmand* **MIT LIDS/FODSI** hdanesh@mit.edu

Suvrit Sra TU Munich / MIT suvrit@mit.edu One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention

Arvind Mahankali **Stanford University** amahanka@stanford.edu Tatsunori B. Hashimoto **Stanford University** thashim@stanford.edu

Tengyu Ma Stanford University tengyuma@stanford.edu

Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers

Damai Dai[†]; Yutao Sun^{||}; Li Dong[†], Yaru Hao[†], Shuming Ma[‡], Zhifang Sui[†], Furu Wei[‡] [†] MOE Key Lab of Computational Linguistics, Peking University \parallel Tsinghua University [‡] Microsoft Research

How do Models do In-Context Learning?

Do Transformers really **learn to implement gradient descent** *for ICL?*

Claim 1: Transformers as Iterative Algorithms

Transformer Layer 1

Linear prediction for y_{t+1} on last hidden states $H^{(12)}$

Train a linear *ReadOut* to predict y_{t+1} on activation $H^{(2)}$

Train a linear *ReadOut* to predict y_{t+1} on activation $H^{(1)}$

Transformer Layer 2

10 11 12 13 14 15 16 17 18 19 20 21 22 # In-Context Examples

Transformer Layer Index

Transformer Errors v.s. # Layers

Preliminaries: Known Algorithms

• Ordinary Least Squares

This method finds the minimum-norm solution to the objective:

 $\mathscr{L}(w \mid X, y)$

The Ordinary Least Squares (OLS) solution has a closed form given by the Normal Equations:

$$
= \frac{1}{2n} ||y - Xw||_2^2.
$$

 $\hat{w}^{\textrm{OLS}} = (X^\mathsf{T} X)^\dagger X^\mathsf{T} y$

̂

where we denote $S := X^{\top}X$ and S^{\dagger} is the pseudo-inverse S.

Preliminaries: Known Algorithms

• Gradient Descent

using the iterative update rule:

error where $\kappa(S) = \frac{\max S}{\max S}$ is the *condition number*. *λ*max(*S*) *λ*min(*S*)

- Gradient descent (GD) finds the weight vector \hat{w}^{GD} with initialization $\hat{w}_0^{\text{GD}} = 0$ and ̂ ̂ $\mathcal{O}^{\mathrm{OD}}=0$
	- $\mathcal{L}^{\mathbf{D}} \eta \nabla_{w} \mathscr{L}(\hat{w})$ ̂ GD *^k* ∣ *X*, *y*)
- It is known that Gradient Descent requires $\mathcal{O}(\kappa(S)\text{log}(1/\epsilon))$ steps to converge to an ϵ
	-

$$
\hat{w}_{k+1}^{\text{GD}} = \hat{w}_k^{\text{GD}} -
$$

Preliminaries: Known Algorithms

• Iterative Newton's Method

finding the pseudo inverse of $S = X^{\top}X$. ̂

This method finds the weight vector \hat{w}^{Newton} by iteratively apply Newton's method to Newton

This computes an approximation of the pseudo inverse using the moments of $S = X^{\top}X$. In contrast to GD, the Newton's method only requires $\mathcal{O}(\log \kappa(S) + \log \log(1/\epsilon))$ steps

to converge. Note that this is *exponentially faster* than the convergence rate of GD.

$$
M_0 = \alpha S, \text{ where } \alpha = \frac{2}{\|SS^{\top}\|_2}, \quad \hat{w}_0^{\text{Newton}} = M_0 X^{\top} y,
$$

$$
M_{k+1} = 2M_k - M_k SM_k, \quad \hat{w}_{k+1}^{\text{Newton}} = M_{k+1} X^{\top} y.
$$

$$
M_0 = \alpha S, \text{ where } \alpha = \frac{2}{\|SS^{\top}\|_2}, \quad \hat{w}_0^{\text{Newton}} = M_0 X^{\top} y,
$$

$$
M_{k+1} = 2M_k - M_k SM_k, \quad \hat{w}_{k+1}^{\text{Newton}} = M_{k+1} X^{\top} y.
$$

Metric: Similarity of Errors Measuring "Similarity" of Two Algorithms

 $x_1, y_1, x_2, y_2, x_3, y_3, \cdots, x_t, y_t$ Algorithm A y_1^A , y_2^A , y_3^A , ... y_t^A Algorithm B y_1^B , y_2^B , y_3^B , ... y_t^B Residual A $(y_1^A - y_1)$, $(y_2^A - y_2)$, $(y_3^A - y_3)$, \cdots $(y_t^A - y_t)$ Residual B $(y_1^B - y_1)$, $(y_2^B - y_2)$, $(y_3^B - y_3)$, \cdots $(y_t^B - y_t)$

Overall Similarity of Errors between A and B = E Cosine Similarity Between Residuals of A and B

Claim 3: Transformer can still match Newton on Ill-Conditioned Case

Rate of Convergence

Claim 4: Transformers Require $\mathcal{O}(d)$ Hidden Size

- Transformers (Hidden Size=8)
- Transformers (Hidden Size=16)
- Transformers (Hidden Size=32)
- Transformers (Hidden Size=64)
- **Least Squares**

Theoretical Justification

Can Transformers actually represent as complicated of a method as Iterative Newton with only polynomially many layers?

Theoretical Justification

There exist Transformer weights such that on any set of in-context examples *f*_{$i=1$} and test point x _{test}, the Transformer predicts on x _{test} using x ^T_{test} \hat{w} ̂ Newton \hat{k} ^{Newton} are the Newton updates given by \hat{w}

• Theorem (Transformer as Newton's Method)

- for some $\alpha > 0$ and $S = X^{\top}X$. The number of layers of the transformer is $k + 8$ and
- One transformer layer computes one Newton iteration. 3 initial transformer layers are

$$
M_j = 2M_{j-1} - M_{j-1}SM_{j-1}, 1 \le j \le k, \quad M_0 = \alpha S
$$

the dimensionality of the hidden layers is $O(d)$. needed for initializing M_0 and 5 layers at the end are needed to read out predictions from the computed pseudo-inverse M_k .

 $\{x_i, y_i\}_{i=1}^n$ and test point x_{test} , the Transformer predicts on x_{test} using $x_{\text{test}}^T \hat{w}_k^{\text{Newton}}$. Here $\hat{w}_k^{\text{Newton}}$ are the Newton updates given by $\hat{w}_k^{\text{Newton}} = M_k X^\top y$ where M_j is updated as ̂ Newton *k* ̂ $N_k^{\text{Ewton}} = M_k X^\mathsf{T} y$ where M_j

More in the Paper

- Transformers also achieve *second-order* convergence rates on *noisy* linear regression. • LSTMs cannot improve over layers, and they behave more like Online GD. • How Transformers deal with more complicated function classes, such as 2-layer
-
- Neural Networks, remains a mystery
- Transformers are also similar to other *second-order* algorithms, such as BFGS, but Transformers do better than Conjugate Gradient methods and L-BFGS.

Thanks!