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How do Models do In-Context Learning?



How do Models do In-Context Learning?

Do Transformers really learn to 
implement gradient descent for ICL?



Claim 1: Transformers as Iterative Algorithms
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Claim 2: Transformers Learn to Achieve  
Second-Order Convergence Rates



Preliminaries: Known Algorithms

• Ordinary Least Squares 

This method finds the minimum-norm solution to the objective:  

 

The Ordinary Least Squares (OLS) solution has a closed form given by the Normal 
Equations: 

 

where we denote  and  is the pseudo-inverse . 

ℒ(w ∣ X, y) =
1

2n
∥y − Xw∥2

2.

ŵOLS = (X⊤X)†X⊤y

S := X⊤X S† S



Preliminaries: Known Algorithms

• Gradient Descent 

Gradient descent (GD) finds the weight vector  with initialization  and 
using the iterative update rule: 

 

It is known that Gradient Descent requires  steps to converge to an  

error where  is the condition number.
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Preliminaries: Known Algorithms

• Iterative Newton’s Method 

This method finds the weight vector  by iteratively apply Newton's method to 
finding the pseudo inverse of . 

 

This computes an approximation of the  pseudo inverse using the moments of . 
In contrast to GD, the Newton’s method only requires  steps 
to converge. Note that this is exponentially faster than the convergence rate of GD.

ŵNewton

S = X⊤X

M0 = αS, where α =
2

∥SS⊤∥2
, ŵNewton

0 = M0X⊤y,

Mk+1 = 2Mk − MkSMk, ŵNewton
k+1 = Mk+1X⊤y .

S = X⊤X
𝒪(log κ(S) + log log(1/ϵ))



Metric: Similarity of Errors
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Claim 2: Transformers Learn to Achieve  
Second-Order Convergence Rates
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Claim 2: Transformers Learn to Achieve  
Second-Order Convergence Rates

Newton has
 

convergence rates
𝒪 (log log(1/ϵ))

Yellow boxes indicate 
best matching Newton 
Steps for a Transformer 

Layer

GD has  
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Claim 2: Transformers Learn to Achieve  
Second-Order Convergence Rates
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Claim 3: Transformer can still match Newton on Ill-Conditioned Case



Rate of Convergence

Algorithm Steps Required for Convergence Algorithm Category

Gradient 
Descent GD = O( 𝛋 log(1/ϵ) ) First-Order

Iterative 
Newton IN = O( log 𝛋 + log log(1/ϵ) ) = log (GD) Second-Order

Transformers TF ≈ IN = log (GD) Second-Order



Claim 4: Transformers Require  Hidden Size𝒪(d)



Theoretical Justification

Can Transformers actually represent as complicated 
of a method as Iterative Newton with only 

polynomially many layers?



Theoretical Justification
• Theorem (Transformer as Newton’s Method) 

There exist Transformer weights such that on any set of in-context examples  
 and test point  , the Transformer predicts on  using . Here 

 are the Newton updates given by  where  is updated as  

 

for some  and  . The number of layers of the transformer is  and 
the dimensionality of the hidden layers is .  

One transformer layer computes one Newton iteration. 3 initial transformer layers are 
needed for initializing  and 5 layers at the end are needed to read out predictions 
from the computed pseudo-inverse .
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More in the Paper

• Transformers also achieve second-order convergence rates on noisy linear regression. 

• LSTMs cannot improve over layers, and they behave more like Online GD. 

• How Transformers deal with more complicated function classes, such as 2-layer 
Neural Networks, remains a mystery 

• Transformers are also similar to other second-order algorithms, such as BFGS, but 
Transformers do better than Conjugate Gradient methods and L-BFGS.
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