
Deqing Fu Tian-Qi Chen Robin Jia Vatsal Sharan

Transformers Learn to Achieve Second-Order
Convergence Rates for In-Context Linear Regression

How do Models do In-Context Learning?

How do Models do In-Context Learning?

Do Transformers really learn to
implement gradient descent for ICL?

Claim 1: Transformers as Iterative Algorithms

Transformer Layer 1

Transformer Layer 2

Transformer Layer 12

Train a linear ReadOut to predict on activation yt+1 H(2)

Train a linear ReadOut to predict on activation yt+1 H(1)

Linear prediction for on last hidden states yt+1 H(12)

Claim 1: Transformers as Iterative Algorithms

Claim 2: Transformers Learn to Achieve
Second-Order Convergence Rates

Preliminaries: Known Algorithms

• Ordinary Least Squares

This method finds the minimum-norm solution to the objective:

The Ordinary Least Squares (OLS) solution has a closed form given by the Normal
Equations:

where we denote and is the pseudo-inverse .

ℒ(w ∣ X, y) =
1

2n
∥y − Xw∥2

2.

ŵOLS = (X⊤X)†X⊤y

S := X⊤X S† S

Preliminaries: Known Algorithms

• Gradient Descent

Gradient descent (GD) finds the weight vector with initialization and
using the iterative update rule:

It is known that Gradient Descent requires steps to converge to an

error where is the condition number.

ŵGD ŵGD
0 = 0

ŵGD
k+1 = ŵGD

k − η∇wℒ(ŵGD
k ∣ X, y)

𝒪 (κ(S)log(1/ϵ)) ϵ

κ(S) =
λmax(S)
λmin(S)

Preliminaries: Known Algorithms

• Iterative Newton’s Method

This method finds the weight vector by iteratively apply Newton's method to
finding the pseudo inverse of .

This computes an approximation of the pseudo inverse using the moments of .
In contrast to GD, the Newton’s method only requires steps
to converge. Note that this is exponentially faster than the convergence rate of GD.

ŵNewton

S = X⊤X

M0 = αS, where α =
2

∥SS⊤∥2
, ŵNewton

0 = M0X⊤y,

Mk+1 = 2Mk − MkSMk, ŵNewton
k+1 = Mk+1X⊤y .

S = X⊤X
𝒪(log κ(S) + log log(1/ϵ))

Metric: Similarity of Errors

, , , , , , , , x1 y1 x2 y2 x3 y3 ⋯ xt yt

Measuring “Similarity” of Two Algorithms

Algorithm A , , ,

Algorithm B , , ,

yA
1 yA

2 yA
3 ⋯ yA

t

yB
1 yB

2 yB
3 ⋯ yB

t

Residual A , , ,

Residual B , , ,

(yA
1 − y1) (yA

2 − y2) (yA
3 − y3) ⋯ (yA

t − yt)

(yB
1 − y1) (yB

2 − y2) (yB
3 − y3) ⋯ (yB

t − yt)

Overall Similarity of Errors between A and B =
𝔼 [Cosine Similarity Between Residuals of A and B]

Claim 2: Transformers Learn to Achieve
Second-Order Convergence Rates

1 Transformer
Layer 3 Newton

Steps
≈

Yellow boxes indicate
best matching Newton
Steps for a Transformer

Layer

Exponential Trend?

Claim 2: Transformers Learn to Achieve
Second-Order Convergence Rates

Newton has

convergence rates
𝒪 (log log(1/ϵ))

Yellow boxes indicate
best matching Newton
Steps for a Transformer

Layer

GD has
convergence rates

𝒪 (log(1/ϵ))

Claim 2: Transformers Learn to Achieve
Second-Order Convergence Rates

Linear Trend in
Log Scale

Claim 3: Transformer can still match Newton on Ill-Conditioned Case

Rate of Convergence

Algorithm Steps Required for Convergence Algorithm Category

Gradient
Descent GD = O(𝛋 log(1/ϵ)) First-Order

Iterative
Newton IN = O(log 𝛋 + log log(1/ϵ)) = log (GD) Second-Order

Transformers TF ≈ IN = log (GD) Second-Order

Claim 4: Transformers Require Hidden Size𝒪(d)

Theoretical Justification

Can Transformers actually represent as complicated
of a method as Iterative Newton with only

polynomially many layers?

Theoretical Justification
• Theorem (Transformer as Newton’s Method)

There exist Transformer weights such that on any set of in-context examples
 and test point , the Transformer predicts on using . Here

 are the Newton updates given by where is updated as

for some and . The number of layers of the transformer is and
the dimensionality of the hidden layers is .

One transformer layer computes one Newton iteration. 3 initial transformer layers are
needed for initializing and 5 layers at the end are needed to read out predictions
from the computed pseudo-inverse .

{xi, yi}n
i=1 xtest xtest x⊤

testŵNewton
k

ŵNewton
k ŵNewton

k = MkX⊤y Mj

Mj = 2Mj−1 − Mj−1SMj−1,1 ≤ j ≤ k, M0 = αS

α > 0 S = X⊤X k + 8
𝒪(d)

M0
Mk

More in the Paper

• Transformers also achieve second-order convergence rates on noisy linear regression.

• LSTMs cannot improve over layers, and they behave more like Online GD.

• How Transformers deal with more complicated function classes, such as 2-layer
Neural Networks, remains a mystery

• Transformers are also similar to other second-order algorithms, such as BFGS, but
Transformers do better than Conjugate Gradient methods and L-BFGS.

Thanks!

