

Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression

Deqing Fu Tian-Qi Chen Robin Jia Vatsal Sharan

How do Models do In-Context Learning?

Transformers Learn In-Context by Gradient Descent

Johannes von Oswald¹² Eyvind Niklasson² Ettore Randazzo² João Sacramento¹ Alexander Mordvintsev² Andrey Zhmoginov² Max Vladymyrov²

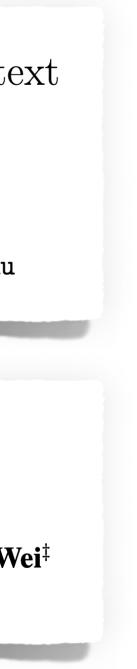
Transformers learn to implement preconditioned gradient descent for in-context learning

Kwangjun Ahn* MIT EECS/LIDS kjahn@mit.edu Xiang Cheng* MIT LIDS chengx@mit.edu Hadi Daneshmand* MIT LIDS/FODSI hdanesh@mit.edu Suvrit Sra TU Munich / MIT suvrit@mit.edu One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention

Arvind Mahankali Stanford University amahanka@stanford.edu Tatsunori B. Hashimoto Stanford University thashim@stanford.edu Tengyu Ma Stanford University tengyuma@stanford.edu

Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers

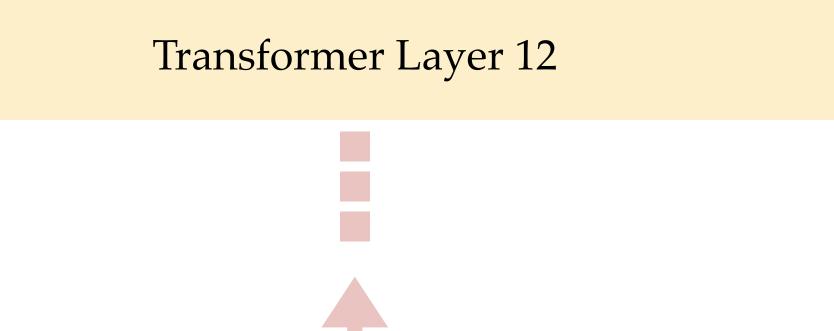
Damai Dai[†], Yutao Sun^{||}, Li Dong[‡], Yaru Hao[‡], Shuming Ma[‡], Zhifang Sui[†], Furu Wei[‡] [†] MOE Key Lab of Computational Linguistics, Peking University ^{||} Tsinghua University [‡] Microsoft Research



How do Models do In-Context Learning?

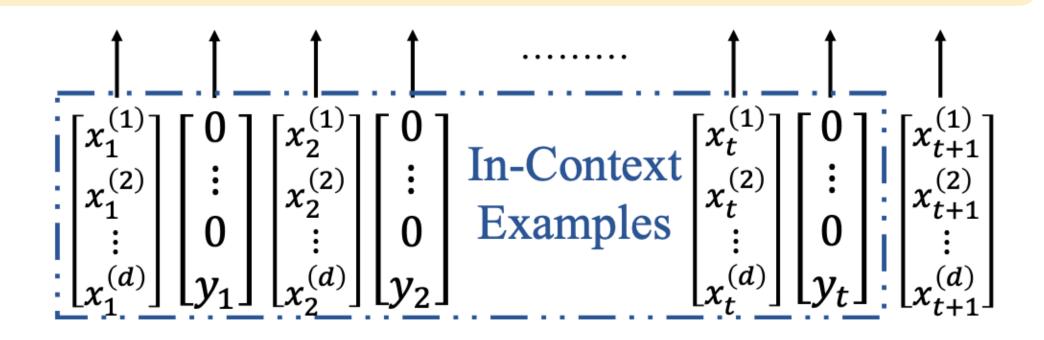
Do Transformers really learn to implement gradient descent for ICL?

Claim 1: Transformers as Iterative Algorithms

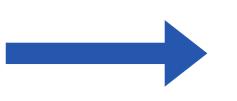


Transformer Layer 2

Transformer Layer 1

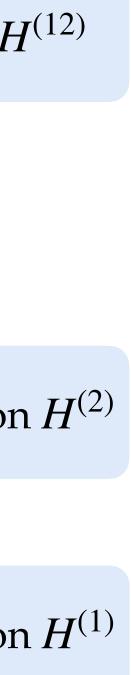


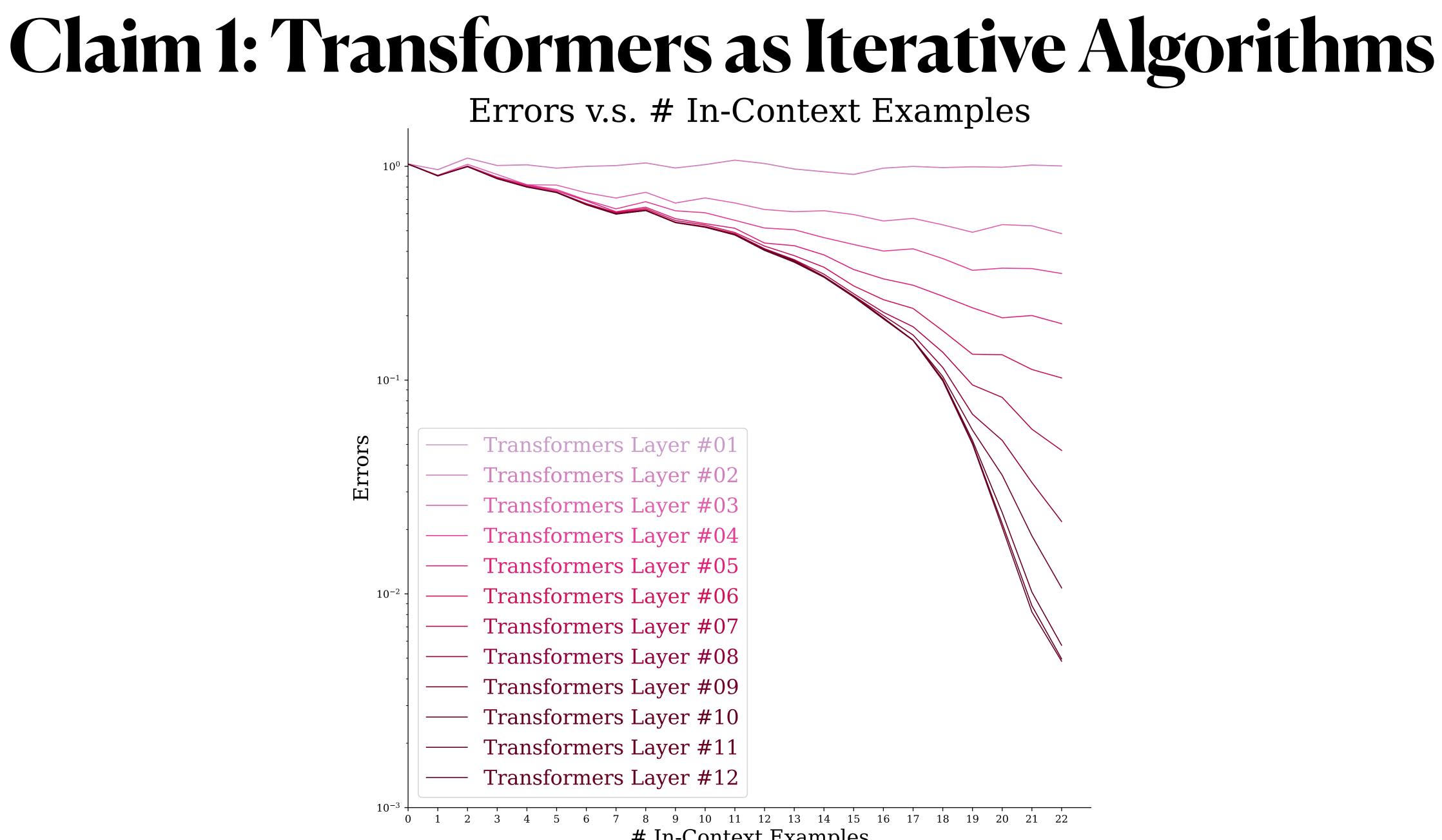
Linear prediction for y_{t+1} on last hidden states $H^{(12)}$



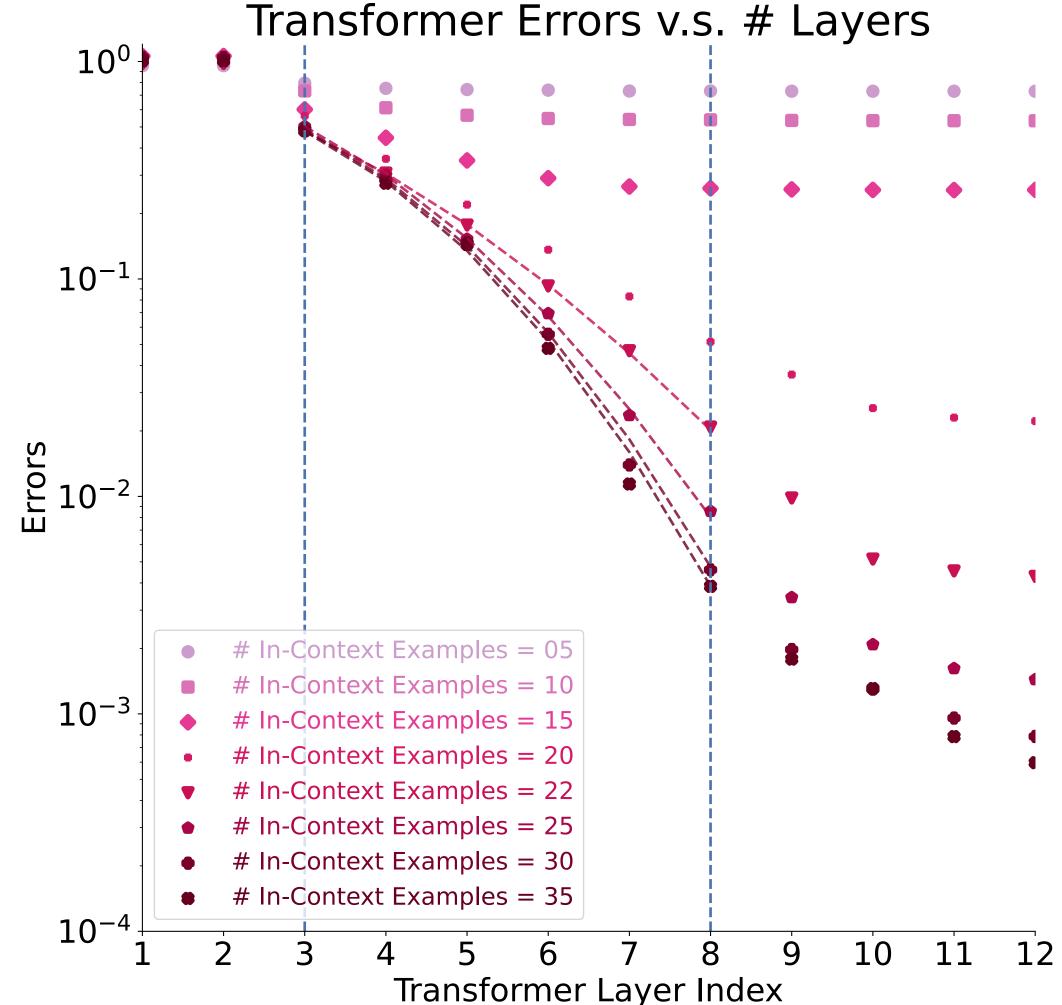
Train a linear *ReadOut* to predict y_{t+1} on activation $H^{(2)}$

Train a linear *ReadOut* to predict y_{t+1} on activation $H^{(1)}$

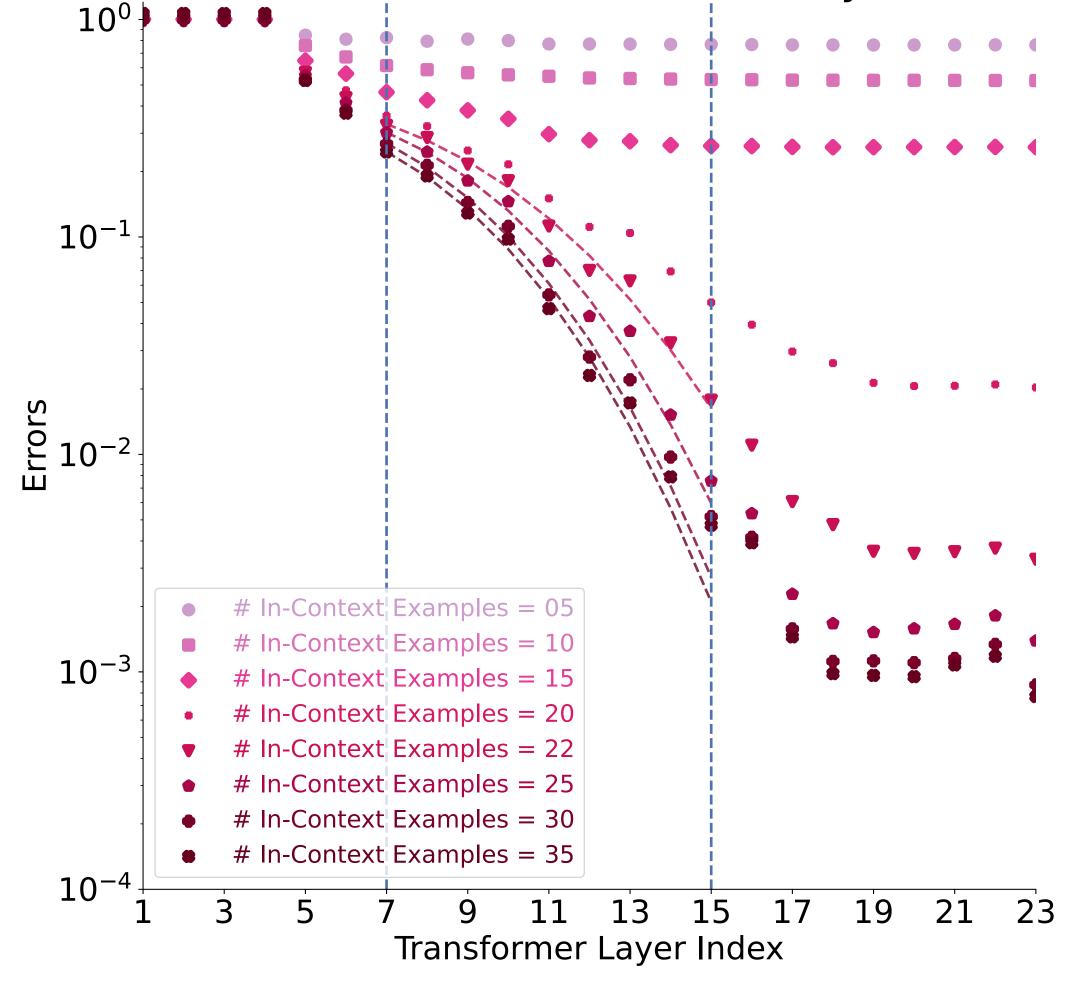




10 11 12 13 14 15 16 17 18 19 20 21 22 # In-Context Examples



Transformer Errors v.s. # Layers



Preliminaries: Known Algorithms

Ordinary Least Squares

This method finds the minimum-norm solution to the objective:

 $\mathscr{L}(w \mid X, y)$

The Ordinary Least Squares (OLS) solution has a closed form given by the Normal Equations:

where we denote $S := X^{\top}X$ and S^{\dagger} is the pseudo-inverse S.

$$= \frac{1}{2n} \|y - Xw\|_2^2.$$

 $\hat{w}^{\text{OLS}} = (X^{\mathsf{T}}X)^{\dagger}X^{\mathsf{T}}y$

Preliminaries: Known Algorithms

Gradient Descent

using the iterative update rule:

$$\hat{w}_{k+1}^{\text{GD}} = \hat{w}_k^{\text{GD}} -$$

error where $\kappa(S) = \frac{\lambda_{\max}(S)}{\lambda_{\min}(S)}$ is the condition number.

- Gradient descent (GD) finds the weight vector \hat{w}^{GD} with initialization $\hat{w}_0^{GD} = 0$ and
 - $-\eta \nabla_w \mathscr{L}(\hat{w}_k^{\text{GD}} \mid X, y)$
- It is known that Gradient Descent requires $O(\kappa(S)\log(1/\epsilon))$ steps to converge to an ϵ

Preliminaries: Known Algorithms

Iterative Newton's Method

finding the pseudo inverse of $S = X^{T}X$.

$$M_0 = \alpha S, \text{ where } \alpha = \frac{2}{\|SS^{\mathsf{T}}\|_2}, \quad \hat{w}_0^{\text{Newton}} = M_0 X^{\mathsf{T}} y,$$
$$M_{k+1} = 2M_k - M_k SM_k, \quad \hat{w}_{k+1}^{\text{Newton}} = M_{k+1} X^{\mathsf{T}} y.$$

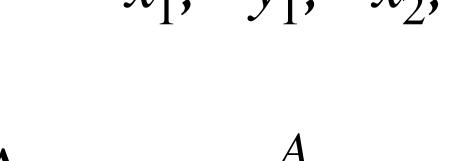
$$M_0 = \alpha S, \text{ where } \alpha = \frac{2}{\|SS^{\mathsf{T}}\|_2}, \quad \hat{w}_0^{\text{Newton}} = M_0 X^{\mathsf{T}} y,$$
$$M_{k+1} = 2M_k - M_k SM_k, \quad \hat{w}_{k+1}^{\text{Newton}} = M_{k+1} X^{\mathsf{T}} y.$$

to converge. Note that this is *exponentially faster* than the convergence rate of GD.

This method finds the weight vector \hat{w}^{Newton} by iteratively apply Newton's method to

This computes an approximation of the pseudo inverse using the moments of $S = X^{T}X$. In contrast to GD, the Newton's method only requires $O(\log \kappa(S) + \log \log(1/\epsilon))$ steps

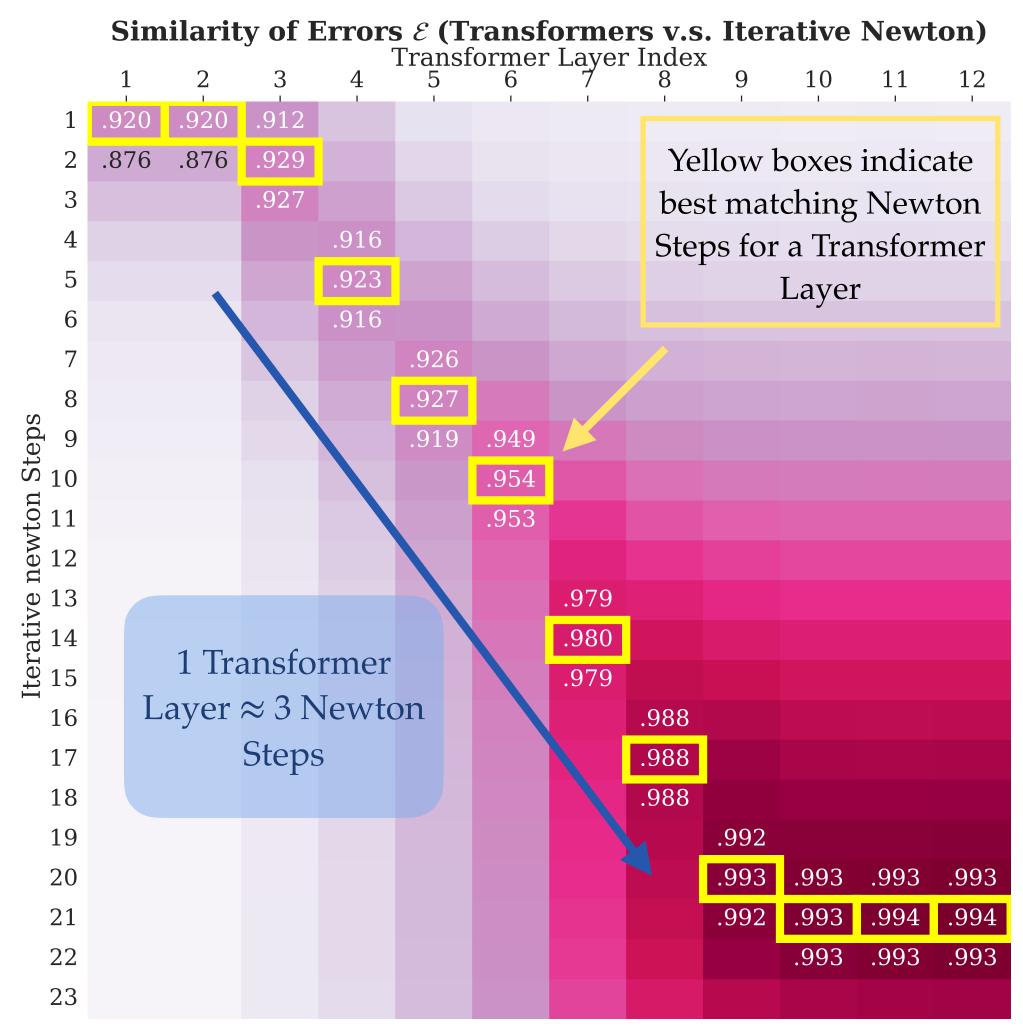
Metric: Similarity of Errors **Measuring "Similarity" of Two Algorithms**

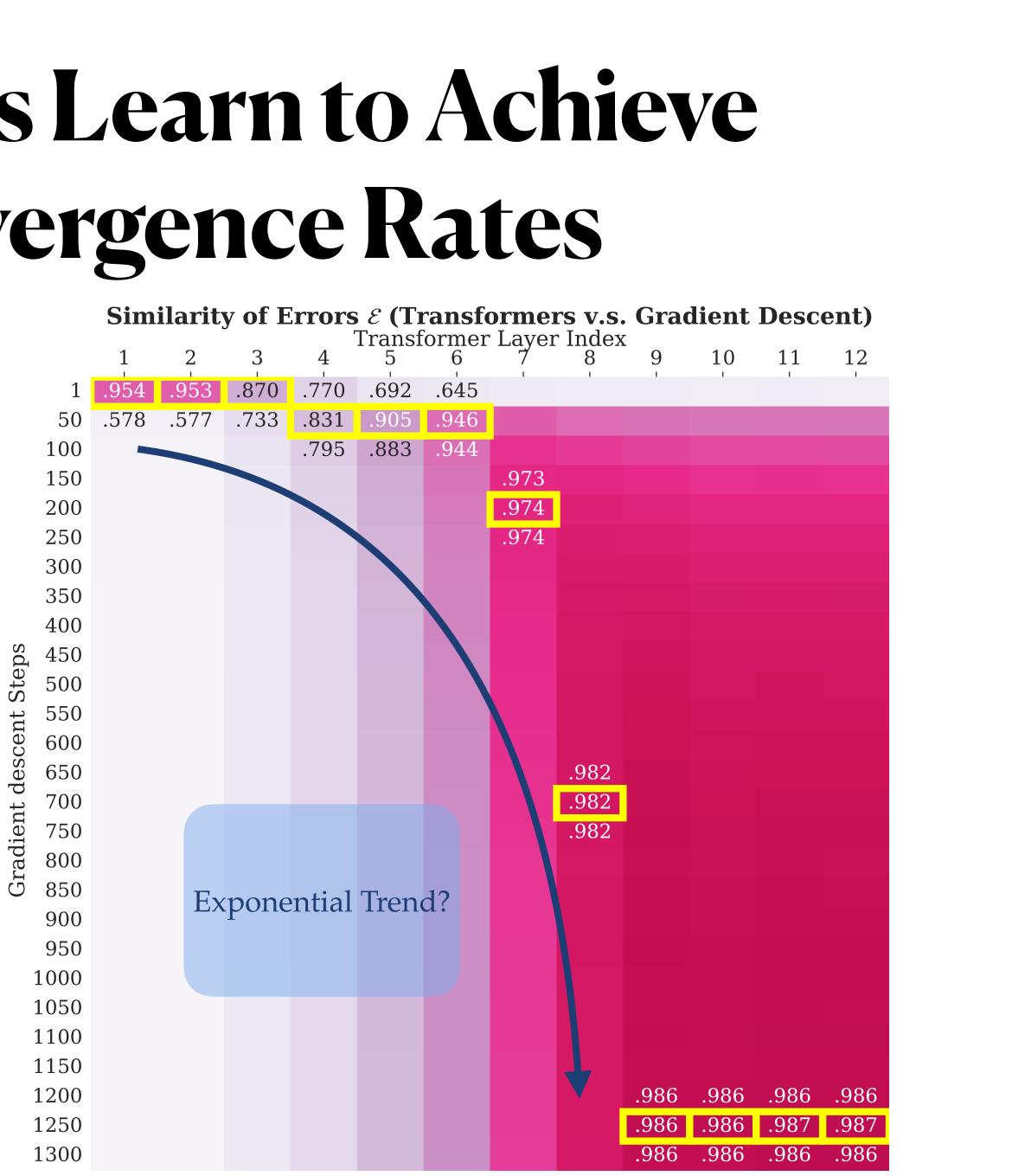


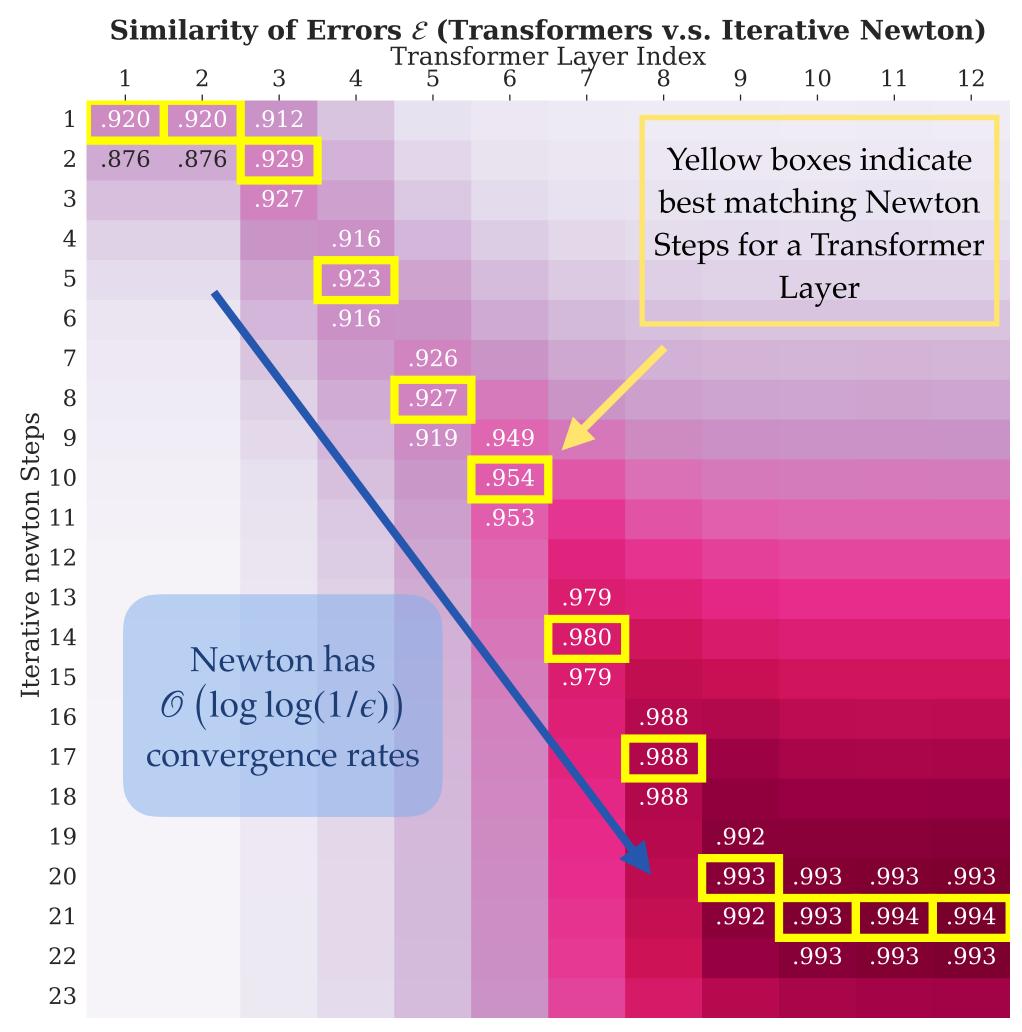
Algorithm B y_1^B , y_2^B , y_3^B , \cdots y_t^B

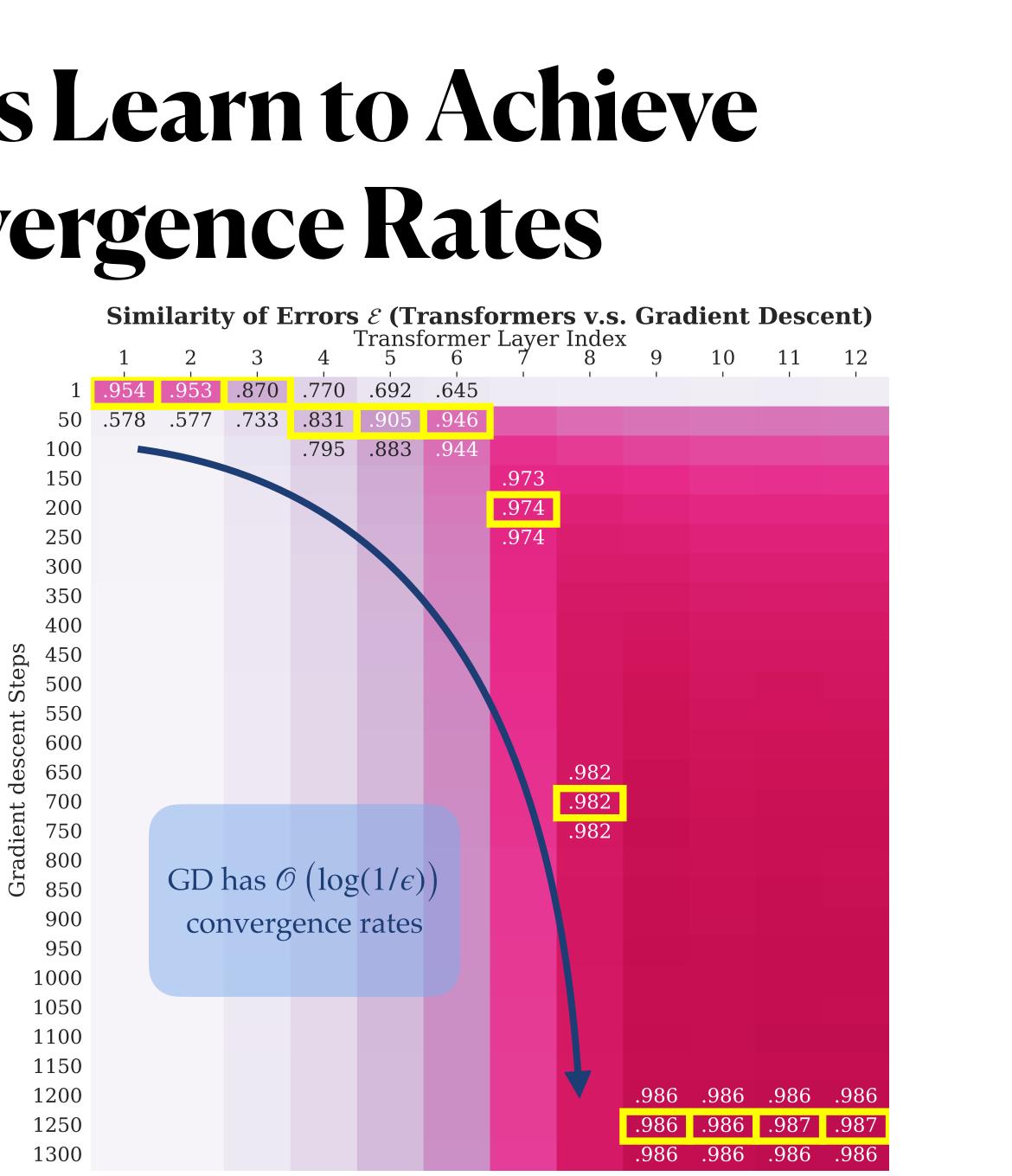
Overall Similarity of Errors between A and B = E Cosine Similarity Between Residuals of *A* and *B*

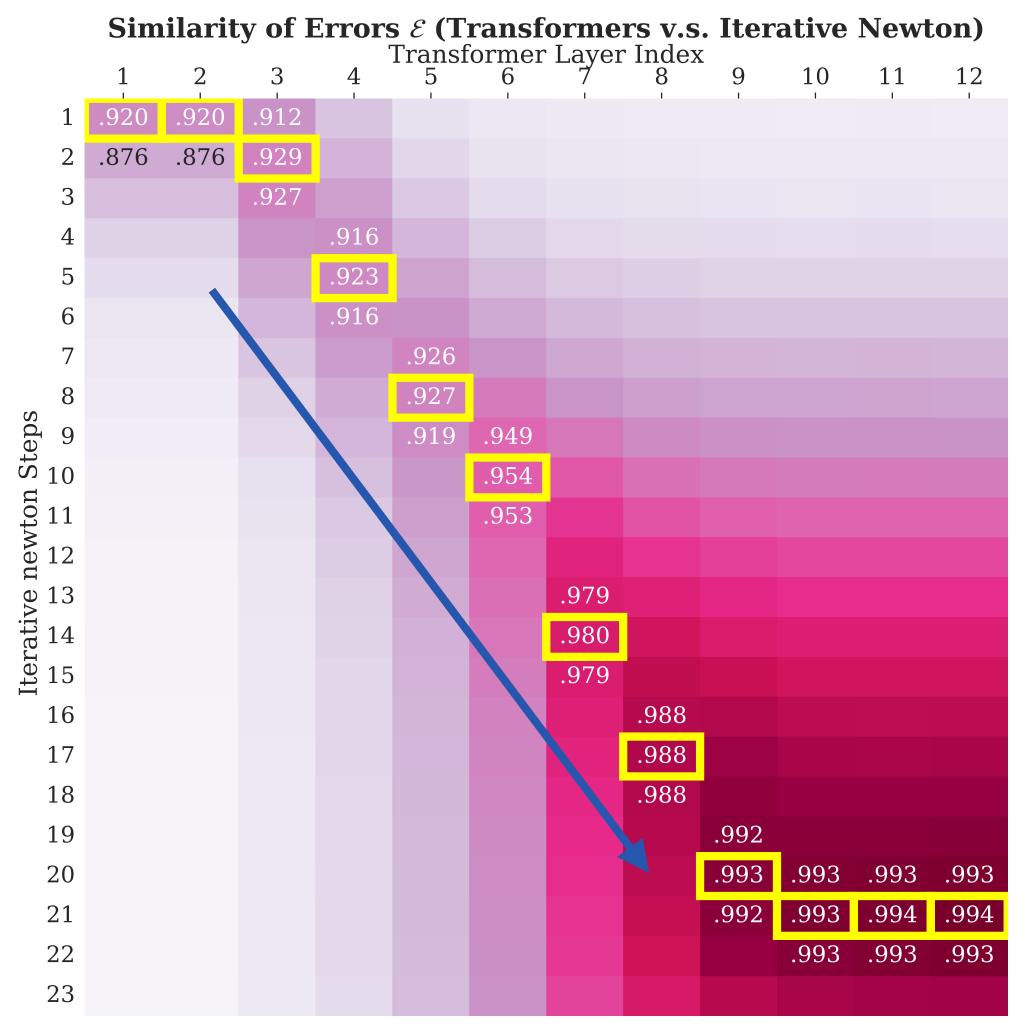
 $x_1, y_1, x_2, y_2, x_3, y_3, \dots, x_t, y_t$ Algorithm A y_1^A , y_2^A , y_3^A , \cdots y_t^A Residual A $(y_1^A - y_1), (y_2^A - y_2), (y_3^A - y_3), \dots (y_t^A - y_t)$ Residual B $(y_1^B - y_1)$, $(y_2^B - y_2)$, $(y_3^B - y_3)$, $\cdots (y_t^B - y_t)$





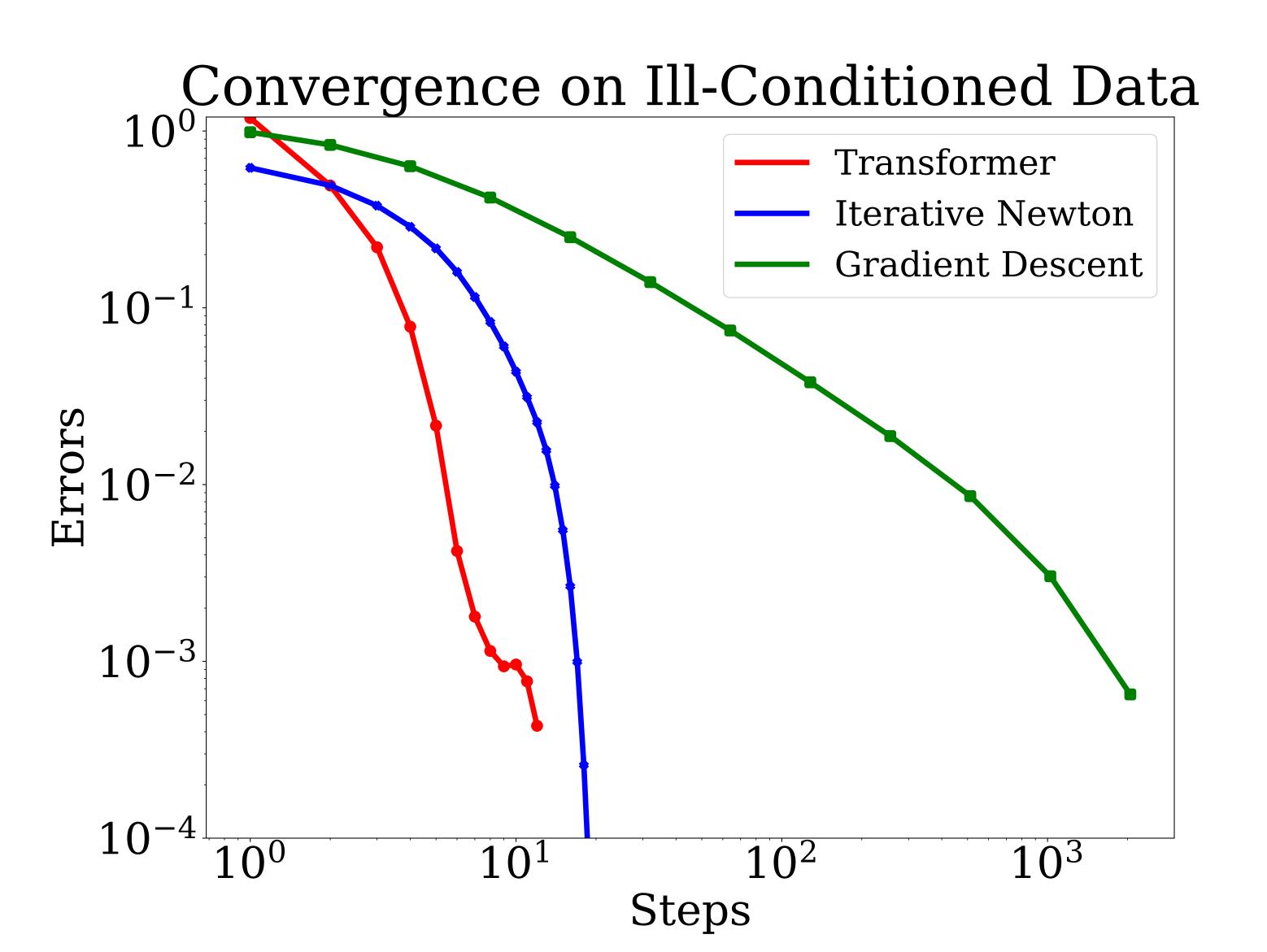






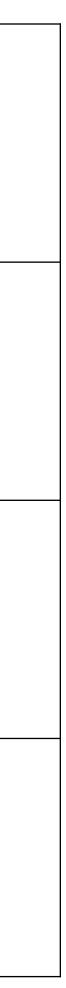
	Similarity of Errors \mathcal{E} (Transformers v.s. Gradient Descent)												
		1	2	3	4	Trasfo 5	ormer 6	Layer 7	Index 8	9	10	11	12
Gradient descent Steps	1	.953	.953	.870	.771	.692	.645	.620	.609	.605	.599	.606	.602
	2	.910	.910	.903	.826	.750	.703	.676	.665	.660	.655	.661	.657
	4	.842	.841	.913	.878	.816	.773	.746	.733	.728	.724	.728	.725
	8	.759	.759	.886	.905	.876	.846	.820	.807	.801	.798	.801	.799
	16	.678	.677	831	.895	.910	.903	.886	.873	.867	.865	.867	.865
	32	.610	.610	.768	.858	.914	.938	.934	.924	.918	.916	.917	.916
	64	.563	.563	.717	.817	.897	.947	.961	.954	.950	.948	.948	.947
	128					.875	.941	.972	.971	.968	.966	.967	.966
Gr	256			Tren		.858	.932	.973	.979	.978	.977	.977	.977
512]	Log	Scal	e	.847	.923	.971	.982	.984	.982	.983	.983
1024		.509	.509	.652	./49	.840	.917	.967	.982	.986	.985	.986	.986
2048		.507	.507	.648	.745	.836	.913	.964	.980	.986	.986	.987	.987
4096		.506	.505	.646	.744	.834	.911	.962	.979	.985	.987	.988	.988

Claim 3: Transformer can still match Newton on Ill-Conditioned Case

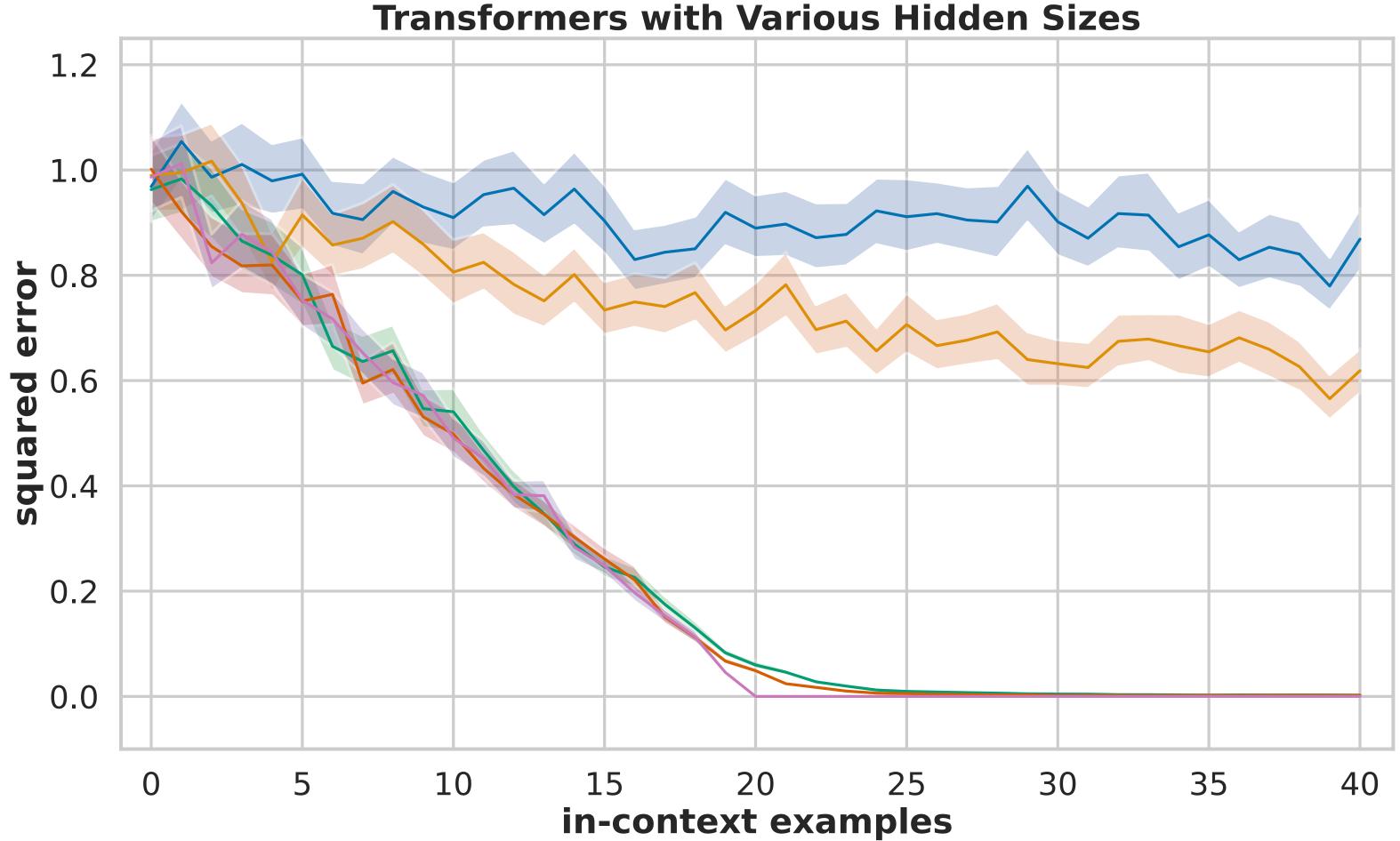


Rate of Convergence

Algorithm	Steps Required for Convergence	Algorithm Category
Gradient Descent	$GD = O(\kappa \log(1/\epsilon))$	First-Order
Iterative Newton	$IN = O(\log \kappa + \log \log(1/\epsilon)) = \log (GD)$	Second-Order
Transformers	$TF \approx IN = \log (GD)$	Second-Order



Claim 4: Transformers Require O(d) Hidden Size



- Transformers (Hidden Size=8)
- Transformers (Hidden Size=16)
- Transformers (Hidden Size=32)
- Transformers (Hidden Size=64)
- Least Squares



Theoretical Justification

Can Transformers actually represent as complicated of a method as Iterative Newton with only polynomially many layers?

Theoretical Justification

• Theorem (Transformer as Newton's Method)

There exist Transformer weights such that on any set of in-context examples

$$M_j = 2M_{j-1} - M_{j-1}SM_{j-1}, 1 \le j \le k, \quad M_0 = \alpha S$$

the dimensionality of the hidden layers is O(d). from the computed pseudo-inverse M_k .

 $\{x_i, y_i\}_{i=1}^n$ and test point x_{test} , the Transformer predicts on x_{test} using $x_{\text{test}}^{\top} \hat{w}_k^{\text{Newton}}$. Here $\hat{w}_{k}^{\text{Newton}}$ are the Newton updates given by $\hat{w}_{k}^{\text{Newton}} = M_{k}X^{\mathsf{T}}y$ where M_{j} is updated as

- for some $\alpha > 0$ and $S = X^T X$. The number of layers of the transformer is k + 8 and
- One transformer layer computes one Newton iteration. 3 initial transformer layers are needed for initializing M_0 and 5 layers at the end are needed to read out predictions

More in the Paper

- Transformers also achieve second-order convergence rates on noisy linear regression. • LSTMs cannot improve over layers, and they behave more like Online GD. • How Transformers deal with more complicated function classes, such as 2-layer
- Neural Networks, remains a mystery
- Transformers are also similar to other *second-order* algorithms, such as BFGS, but Transformers do better than Conjugate Gradient methods and L-BFGS.

Thanks!