

Where's Waldo: Diffusion Features for Personalized Segmentation and Retrieval

Dvir Samuel^{1,2}, Rami Ben-Ari², Matan Levy³, Nir Darshan², Gal Chechik^{2,4}

¹Bar-Ilan University, Ramat-Gan, Israel
²OriginAl, Tel-Aviv, Israel
³The Hebrew University of Jerusalem, Jerusalem, Israel
⁴NVIDIA Research, Tel-Aviv, Israel

Personalized Segmentation and Retrieval

Personalized retrieval and segmentation focus on identifying and segmenting specific instances within a dataset.

Identifying a specific product in a catalog

Tracking your beloved dog in images that contain multiple similar dogs

Personalized Segmentation and Retrieval

Personalized retrieval and segmentation focus on identifying and segmenting specific instances within a dataset.

Identifying a specific product in a catalog

Tracking your beloved dog in images that contain multiple similar dogs

Personalized Segmentation and Retrieval

Personalized retrieval and segmentation focus on identifying and segmenting specific instances within a dataset.

Identifying a specific product in a catalog

Tracking your beloved dog in images that contain multiple similar dogs

Current Methods

- Traditional supervised approaches are accurate but often rely on large amounts of domain-specific labeled data.
- Self-supervised methods (DINOv2 and PerSAM) have good discriminative performance between categories, however they struggle with multiple similar instances.

Current Methods

- Traditional supervised approaches are accurate but often rely on large amounts of domain-specific labeled data.
- Self-supervised methods (DINOv2 and PerSAM) have good discriminative performance between categories, however they struggle with multiple similar instances.

Motivation

- Text-to-image foundation models have achieved remarkable success in generating new and unique images from text prompts.
- We hypothesize that properties of generated objects are encoded within the intermediate features of the diffusion model during generation

Are instance features encoded in diffusion models?

Appearance Features: We found that instance appearance features are encoded in the queries and keys matrices of the self-attention block.

Are instance features encoded in diffusion models?

Semantic Features:

Cross-attention maps link the textual input prompt to image patches, creating a coarse semantic segmentation map that highlights potential object locations.

Cross Attention Maps

C = "dog"

Personalized Diffusion Feature Matching (PDM)

PDM uniquely leverages diffusion features for instance-based tasks without extra training, combining both appearance and semantic characteristics of an instance.

Benchmark datasets

Existing benchmarks fall short as they tend to feature either a single, distinct object or multiple objects from different categories in each image.

Benchmark datasets

- New Benchmarks: PerMIR (Personalized Multi-Instance Retrieval) and PerMIS (Personalized Multi-Instance Segmentation).
- Built from BURST [1] Dataset with challenging multi-instance images.
- Highlights strengths of instance-based approaches.

 $\mathcal{R}Oxford$

DAVIS

PerSeg

PerMI{R/S} (Ours)

[1] Athar et al, BURST: A Benchmark for Unifying Object Recognition, Segmentation and Tracking in Video. (2022)

Results: Personalized Segmentation

PDM achieves top results on segmentation accuracy. Has high consistency in segmenting the exact instance among similar objects.

	Perosnalized Image Segmentation						
	PerSeg		PerMIS				
Model	mIoII	blaU	(Image)				
Widdei		0100		0100			
SEEM [42]	87.1	55.7	14.3	35.8			
SegGPT [36]	94.3	76.5	18.7	39.5			
MAST [15]	-	-	-	-			
SFC [12]	-	-	-	-			
DINOv2 [18]	68.7	27.6	20.2	41.9			
DIFT [31]	63.2	26.9	21.9	43.1			
DiffSeg [33]	38.6	37.9	7.9	6.4			
PerSAM(SAM) [39]	95.3	77.9	16.5	38.3			
PDM (ours)	95.4	79.8	42.3	86.8			
PerSAM(PDM) (ours)	97.4	81.9	49.7	89.3			

Results: Personalized Retrieval

PDM outperforms self-supervised and weakly supervised baselines. Significant gains in complex, multi-instance scenarios.

	ROxford		RParis		PerMIR
Methods	Medium	Hard	Medium	Hard	
Self & Weakly Supervised					
MAE [11]	11.7	2.2	19.9	4.7	-
iBOT [40]	39.0	12.7	70.7	47.0	-
DINOv2 [18]	75.1	54.0	92.7	83.5	29.7
CLIP [24]	28.5	7.0	66.7	41.0	20.9
OpenClip [13]	50.7	19.7	79.2	60.2	26.7
PDM (ours)	77.2	58.3	93.4	84.7	73.0
OpenClip + PDM (ours)	70.1	57.7	90.1	82.0	69.9
DINOv2 + PDM (ours)	80.4	62.1	93.6	85.1	70.8
Supervised					
GSS [17]	80.6	64.7	93.4	85.3	-
HP [2]	85.7	70.3	92.6	83.3	-
SuperGlobal [29]	90.9	80.2	93.9	86.7	33.5
GSS + PDM (ours)	89.3	76.1	92.9	84.8	62.0
SuperGlobal + PDM (ours)	91.2	80.3	94.0	86.8	69.1

Thank you!

