# MAC Advice for Facility Location Mechanism Design

Zohar Barak (TAU),

Anupam Gupta (NYU, Google Research), Inbal Talgam-Cohen (TAU)

#### NeurIPS 2024



### **Algorithms with Predictions/Advice**



Algorithms with predictions Mechanism design with predictions **Facility location** mechanism design

[Lykouris, Vassilvitskii 2020]

#### [Agrawal, Balkanski, Gkatzelis, Ou, Tan 2022]

[Xu and Lu 2022]

. . .

### **Problem definition (no predictions)**

#### Input:

*n* locations of strategic agents in a metric space (each agent reports her location).



#### Input:

*n* locations of strategic agents in a metric space (each agent reports her location).

#### <u>Goal:</u>

Return the **k facility locations** closest to the agents (minimize the **sum** of distances)



Agent location



Optimal facility location



#### Input:

*n* locations of strategic agents in a metric space (each agent reports her location).

#### <u>Goal:</u>

Return the **k facility locations** closest to the agents (minimize the **sum** of distances)

We need to design a **strategyproof mechanism** to do this.



Agent location



Optimal facility location



# **Setting with Predictions**

In addition to the input, we also have predictions for each agent location.



# **Determining the error model**

If the predictions are "good" we want good performance.

What are "good predictions"?



### Standard "Worst case" error



**Error of each prediction i:**  $e_i$ 

#### <u>Standard "Worst case" error η</u>:

$$\eta \coloneqq \sum_{i} e_i$$

$$or$$

$$\eta \coloneqq \max_i e_i$$

# Our model: MAC ( $\epsilon, \delta$ ) predictions

#### **MAC** = Mostly Approximately Correct:

**Most** (At least  $1 - \delta$  fraction) of the predictions are **approximately correct** (up to an  $\varepsilon$  additive error).



11

### **Results**\*

#### **Deterministic** mechanism design

| Problem                                                   | Best known "no predictions"<br>approximation ratio | MAC predictions<br>approximation ratio     |
|-----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Single facility in $\mathbb{R}^d$                         | $\sqrt{d}$ [Meir et al. 2019]                      | $1 + O(\delta)$                            |
| $oldsymbol{eta}$ -balanced k facilities in $\mathbb{R}^d$ | Linear ( <i>O</i> ( <i>n</i> )) [Aziz et al. 2020] | A constant depending on $\delta, \beta, k$ |

### **Results**\*

#### **Deterministic** mechanism design

| Problem                                                   | Best known "no predictions"<br>approximation ratio | MAC predictions<br>approximation ratio     |
|-----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Single facility in $\mathbb{R}^d$                         | $\sqrt{d}$ [Meir et al. 2019]                      | $1 + O(\delta)$                            |
| $oldsymbol{eta}$ -balanced k facilities in $\mathbb{R}^d$ | Linear ( <i>O</i> ( <i>n</i> )) [Aziz et al. 2020] | A constant depending on $\delta, \beta, k$ |



### Random mechanism design

| Problem                        | Best known "no predictions"<br>approximation ratio | MAC predictions<br>Approximation ratio |
|--------------------------------|----------------------------------------------------|----------------------------------------|
| 2 facility locations on a line | 4 [Lu et al. 2010]                                 | 3.6 + $O(\delta)$                      |

\* $\varepsilon$  is omitted from the results, as  $\varepsilon$  introduces another small additive term.

### **Results**\*

#### **Deterministic mechanism design**

| Problem                                                   | Best known "no predictions"<br>approximation ratio | MAC predictions<br>approximation ratio     |
|-----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Single facility in $\mathbb{R}^d$                         | $\sqrt{d}$ [Meir et al. 2019]                      | $1 + O(\delta)$                            |
| $oldsymbol{eta}$ -balanced k facilities in $\mathbb{R}^d$ | Linear ( <i>O</i> ( <i>n</i> )) [Aziz et al. 2020] | A constant depending on $\delta, \beta, k$ |



\* $\varepsilon$  is omitted from the results, as  $\varepsilon$  introduces another small additive term.

Much harder setting in the presence of outliers

### **Techniques of independent interest**

#### Distance and approximation robustness

 Quantitative versions of the known notion of "breakdown point" in robust statistics.

#### Second facility location problem

• Separate interesting "no predictions" mechanism design problem

### **Future directions**



# Thanks for listening

