

Neural decoding from stereotactic EEG: accounting for electrode variability across subjects

38th Conference on Neural Information Processing Systems (NeurIPS 2024)

<u>Georgios Mentzelopoulos</u>¹, Evangelos Chatzipantazis¹, Ashwin G. Ramayya², Michelle J. Hedlund², Vivek P. Buch²,Kostas Daniilidis^{1, 3}, Konrad P. Kording¹, Flavia Vitale¹

1. University of Pennsylvania, 2. Stanford University, 3. Archimedes, Athena RC

How do thoughts translate into actions?

Thoughts

Actions

How do thoughts translate into actions?

Thoughts

Actions

Behavioral Experiment

Behavioral Experiment

Motor Action (y)

Behavioral Experiment

Neural Activity (x)

Time

f(x) = y

Motor Action (y)

Challenges to building neural decoders based on sEEG.

Small Cohort Size

Challenges to building neural decoders based on sEEG.

Highly variable electrode number/placement across subjects

Challenges to building neural decoders based on sEEG.

Highly variable electrode number/placement across subjects

Baseline behavior highly variable across subjects

Within Subject Models

Within Subject Models

Across Subject Models

Question: Can we build unified models to decode behavior across subjects using sEEG?

Framework: Seegnificant

Signal processing for electrode selection
Build ANN to decode behavior from neural activity of selected electrodes

Framework: Seegnificant

Identify behaviorally relevant electrodes based on high-γ band activity.

Framework: Seegnificant

Identify behaviorally relevant electrodes based on high-γ band activity.

Dataset

Study Participants

Sex

Age

Neural recordings: sEEG

Behavioral task

Goal: decoding the trial-wise response time of subject using their sEEG.

Results: Single-subject vs multi-subject models

Single-subject models (SS)

Results: Single-subject vs multi-subject models

Vitale Conter Lab

Single-subject models (SS)

Results: Single-subject vs multi-subject models

Vitale Conter Lab

Results: Transferring pretrained multi-subject model to left-out subjects

Single-subject models (SS)

Results: Transferring pretrained multi-subject model to left-out subjects

Single-subject models (SS)

Multi-subject models with all subjects but one (MS)

Results: Transferring pretrained multi-subject model to left-out subjects

Single-subject models (SS)

Results: Baseline comparisons

Summary

- We introduce Seegnificant: a training framework and architecture that can be used to decode behavior across subjects using sEEG data.
- Using Seegnificant, we show:
 - Training unified, multi-subject models for neural decoding based on sEEG is possible.
 - Training models on multiple subjects improves decoding performance compared to training on single subjects.
 - Multi-subject models can be efficiently transferred to new subjects.

Our paper and code is available at gmentz.github.io/seegnificant

Acknowledgements

Center Neuroengineering Therapeutics

23