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Only few behavioral trials per subject
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Baseline behavior highly variable across subjectsSmall Cohort Size

Only few behavioral trials per subject
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Question: Can we build unified models to decode behavior across subjects using sEEG? 



Framework: Seegnificant
I. Signal processing for electrode selection

II. Build ANN to decode behavior from neural activity of 
selected electrodes
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Identify behaviorally relevant electrodes based on 
high-γ band activity.
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Identify behaviorally relevant electrodes based on 
high-γ band activity.

Use neural activity to decode behavior.
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Study Participants

Goal: decoding the trial-wise response time of subject using their sEEG.

138

Sex

16 57

Age

Ethnicity

Behavioral task

Neural recordings: sEEG
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Seegnificant R2: 0.30 +/- 0.05

Single-subject models (SS)
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Seegnificant R2: 0.30 +/- 0.05

Single-subject models (SS)

Test set
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Results: Single-subject vs multi-subject models
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Seegnificant R2: 0.30 +/- 0.05

Single-subject models (SS)

Test set

Multi-subject models (MS)

R2: 0.39 +/- 0.05Seegnificant

Test set

Multi-subject models + finetuning to single subjects (MS + F)

R2: 0.41 +/- 0.05Seegnificant

Test set

MS vs SS

(MS + F) vs SS
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Results: Transferring pretrained multi-subject model to left-out subjects
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Seegnificant R2: 0.30 +/- 0.05

Single-subject models (SS)

Test set

Multi-subject models with all subjects but one (MS)

Seegnificant
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Results: Transferring pretrained multi-subject model to left-out subjects
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Seegnificant R2: 0.30 +/- 0.05

Single-subject models (SS)

Test set

(SS + T) vs MS

(SS + T) vs SS

Multi-subject models with all subjects but one (MS)

Seegnificant

Seegnificant R2: 0.38 +/- 0.05

Single-subject + transfer from pretrained (SS + T)

Test set

MLP
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Results: Baseline comparisons
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Baseline Models

R2 ≤ 0.27 +/- 0.05

Seegnificant
(Single-Subject)

R2: 0.30 +/- 0.05

Seegnificant
(Multi-Subject)

R2: 0.39 +/- 0.05

Seegnificant
(Multi-Subject + Finetune)

R2: 0.41 +/- 0.05

Seegnificant
(Single-Subject + Transfer)

R2: 0.38 +/- 0.05



1https://doi.org/10.1016/j.neuroimage.2021.118127

Summary
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● We introduce Seegnificant: a training framework and architecture that can be used to decode behavior 
across subjects using sEEG data.

● Using Seegnificant, we show:

○ Training unified, multi-subject models for neural decoding based on sEEG is possible.

○ Training models on multiple subjects improves decoding performance compared to training on single 
subjects.

○ Multi-subject models can be efficiently transferred to new subjects.

Our paper and code is available at 

gmentz.github.io/seegnificant
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