An Improved Empirical Fisher Approximation for Natural Gradient Descent

Xiaodong Wu^{1*}, Wenyi Yu^{2*}, Chao Zhang², Philip Woodland¹

¹Dept. of Engineering, University of Cambridge ²Dept. of Electronic Engineering, Tsinghua University *Equal Contribution Email: xw338@cam.ac.uk

Introduction

- Natural Gradient Descent (NGD) enjoys improved convergence
 - 0
 - Exact Fisher matrix is too large to store for large models $\mathbf{F} \in \mathbb{R}^{P \times P}$ Preconditioned update $\mathbf{F}^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$ is impossible to compute for large models 0
- Empirical Fisher (EF) is a commonly used approximation for NGD

$$\tilde{\mathbf{F}} := \sum_{n} \left[\nabla_{\boldsymbol{\theta}} \log p_n(y_n) \nabla_{\boldsymbol{\theta}} \log p_n(y_n)^\top \right] = \nabla_{\boldsymbol{\theta}} \boldsymbol{l}^\top \nabla_{\boldsymbol{\theta}} \boldsymbol{l}$$

- $\nabla_{\theta} l \in \mathbb{R}^{N \times P}$ is the empirical per-sample gradient, can be collected during back-propagation. 0
 - Easy to implement.
- O EF is not theoretically well-supported.
 - Approximation quality is limited.

Inversely-Scaled Projection of Empirical Fisher (EF)

• EF update enforces Equal Per-sample Loss Reduction

$$\Delta \boldsymbol{l}_{\rm EF} = -\nabla_{\boldsymbol{\theta}} \boldsymbol{l} \Delta \boldsymbol{\theta}_{\rm EF} = -\eta \, \nabla_{\boldsymbol{\theta}} \boldsymbol{l} \nabla_{\boldsymbol{\theta}} \boldsymbol{l}^{\top} (\nabla_{\boldsymbol{\theta}} \boldsymbol{l} \nabla_{\boldsymbol{\theta}} \boldsymbol{l}^{\top} + \lambda \mathbf{I})^{-1} \mathbf{1} \approx (-\eta \mathbf{I})^{-1} \mathbf{I} \approx (-\eta \mathbf{I})^{-1$$

• Better trained samples get significantly more updated

Visualisation on Least-Squares Toy Problem

- Distorted Training Trajectory
- When one sample is nearly converged, the update norm becomes larger (inversely-scaled)

Improved Empirical Fisher (iEF)

• Induced Per-sample Loss Reduction: convergence-level aware for every sample

$$\Delta(l_n)_{\rm iEF} = \nabla_{\boldsymbol{\theta}} l_n^{\rm T} \Delta \boldsymbol{\theta}_{\rm iEF} \approx -\eta \|\nabla_{\boldsymbol{z}_n} l_n\|_2^2$$

O $\| \nabla_{\boldsymbol{z}_n} l_n \|_2$ is the logits-level gradient norm

• Inspiration : iEF Approximates per-sample loss reduction of Gauss-Newton algorithm

$$\Delta(l_n)_{\rm GN} \approx -\eta \, \|\nabla_{\boldsymbol{z}_n} l_n\|_2^2$$

O Gauss-Newton algorithm is a Generalised NGD method.

Visualisation on Least-Squares Toy Problem

- iEF Adapted to the Curvature of the loss landscape
- No more Distorted Training Trajectory

Experiments

- We compare **EXACT** EF (empirical Fisher), iEF (improved EF) and SF (sampled Fisher) for practical and up-to-date optimization setups.
- We consider Parameter-Efficient Finetuning setup for pretrained Transformer models for GLUE (textual classification) and CIFAR (image classification) tasks.
 - O Optimisation Performance
 - O Approximation Quality to NG Updates

Optimisation Performance

• Overall Test Performance:

	AdamW	Adafactor	SGD	EF	SF	iEF
GLUE + T5 + Prompt Tuning	-	77.1	67.4	48.1	69.7	79.3
GLUE + T5 + LoRA	80.1	-	77.3	63.1	76.5	79.3
CIFAR100 + ViT + LoRA	93.9	_	91.3	31.0	92.8	94.3

O iEF achieves comparable performance with well-tuned baseline optimisers

O iEF consistently outperforms SGD, EF and SF optimisers

O EF consistently suffers from unstable training and is unable to train a decent model

Evaluation Framework for Approximation Quality

- Traditional Methods usually requires Computation of the Exact Fisher matrix $\mathbf{F} \in \mathbb{R}^{P \times P}$
 - O Too Expensive!
- Our Efficient Evaluation Framework for Large Scale Neural Networks
 - This Framework requires only a matrix-vector-product with Fisher matrix
 - Efficient to compute
 - Theoretically well-supported

Approximation Quality w.r.t. Time and Damping

• Approximation quality of EF/SF/iEF updates for different damping values (x-axis is the damping value) (y-axis is the relative approximation indicator \downarrow) at different training stages

- O EF and SF updates are sensitive to damping values
- O Optimal damping values for EF and SF vary greatly across training stages (and tasks)
- O iEF has comparable performance to optimally damped SF updates
- O iEF is robust to damping values (small damping would suffice)

Conclusions

- Identify a crucial flaw of EF: *the inversely-scaled projection* issue.
- We proposed the improved EF (iEF), which is shown to be robust and achieve better quality.
- We proposed an efficient evaluation framework for the approximation quality to NG update.

Thank you

Contact Email: xw338@cam.ac.uk

Preliminaries

• Natural Gradient Descent (NGD) enjoys improved convergence

$$\mathbf{F} := \sum_{n} \sum_{c} p_{n}(c) \left[\nabla_{\boldsymbol{\theta}} \log p_{n}(c) \nabla_{\boldsymbol{\theta}} \log p_{n}(c)^{\top} \right]$$

• Preconditioned update $\mathbf{F}^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$ is impossible to compute for large scaled neural networks

Monte-Carlo Sampled Fisher (SF) is a well-supported approximation method

$$\hat{\mathbf{F}}(K) = \frac{1}{K} \sum_{n=1}^{N} \sum_{k=1}^{K} [\nabla_{\boldsymbol{\theta}} \log p_n(\hat{y}_n^{(k)}) \nabla_{\boldsymbol{\theta}} \log p_n(\hat{y}_n^{(k)})^{\top}]$$

• $\hat{y}_n^{(k)} \sim p_{\theta}(y|\boldsymbol{x}_n)$ Too expensive, Hard to implement, Even for K = 1.

• Empirical Fisher (EF) is a commonly used approximation for NGD

$$\tilde{\mathbf{F}} := \sum_{n} \left[\nabla_{\boldsymbol{\theta}} \log p_n(y_n) \nabla_{\boldsymbol{\theta}} \log p_n(y_n)^\top \right] = \nabla_{\boldsymbol{\theta}} \boldsymbol{l}^\top \nabla_{\boldsymbol{\theta}} \boldsymbol{l}$$

 $\circ_{\nabla_{\theta} l}$ is the empirical per-sample gradient. Fast, Easy to implement. Poor Quality.