An Improved Empirical Fisher Approximation for Natural Gradient Descent

Xiaodong Wu^{1*}, Wenyi Yu^{2*}, Chao Zhang², Philip Woodland¹

1Dept. of Engineering, University of Cambridge 2Dept. of Electronic Engineering, Tsinghua University * Equal Contribution Email: **xw338@cam.ac.uk**

Introduction

- Natural Gradient Descent (NGD) enjoys improved convergence
	- Exact Fisher matrix is too large to store for large models
	- \circ Preconditioned update $\mathbf{F}^{-1}\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta})$ is impossible to compute for large models
- Empirical Fisher (EF) is a commonly used approximation for NGD

$$
\tilde{\mathbf{F}} \coloneqq \sum\nolimits_n \left[\nabla_{\boldsymbol{\theta}} \log p_n(y_n) \nabla_{\boldsymbol{\theta}} \log p_n(y_n)^\top \right] = \widehat{\nabla_{\boldsymbol{\theta}} \boldsymbol{l}}^\top \nabla_{\boldsymbol{\theta}} \boldsymbol{l}
$$

- $\bigcirc \quad \nabla_{\theta} l \in \mathbb{R}^{N \times P}$ is the empirical per-sample gradient, can be collected during back-propagation.
	- Easy to implement.
- EF is not theoretically well-supported.
	- Approximation quality is limited.

Inversely-Scaled Projection of Empirical Fisher (EF)

● EF update enforces Equal Per-sample Loss Reduction

$$
\Delta \boldsymbol{l}_{\text{EF}} = -\nabla_{\boldsymbol{\theta}} l \Delta \boldsymbol{\theta}_{\text{EF}} = -\eta\, \nabla_{\boldsymbol{\theta}} l \nabla_{\boldsymbol{\theta}} l^\top (\nabla_{\boldsymbol{\theta}} l \nabla_{\boldsymbol{\theta}} l^\top + \lambda \mathbf{I})^{-1} \mathbf{1} \approx \bigr(\!\!-\eta \mathbf{1}\! \bigr)
$$

● Better trained samples get significantly more updated

Visualisation on Least-Squares Toy Problem

- **Distorted Training Trajectory**
- When one sample is nearly converged, the update norm becomes larger (inversely-scaled)

Improved Empirical Fisher (iEF)

● Induced Per-sample Loss Reduction: convergence-level aware for every sample

$$
\Delta(l_n)_{\rm iEF} = \nabla_{\boldsymbol{\theta}} l_n^\top \Delta \boldsymbol{\theta}_{\rm iEF} \approx -\eta \|\nabla_{\boldsymbol{z}_n} l_n\|_2^2
$$

 $\mathcal{O} \|\nabla_{\boldsymbol{z}_n} l_n\|_2$ is the logits-level gradient norm

Inspiration : iEF Approximates per-sample loss reduction of Gauss-Newton algorithm

$$
\Delta(l_n)_{\rm GN} \approx -\eta \, \|\nabla_{\boldsymbol{z}_n} l_n\|_2^2
$$

○ Gauss-Newton algorithm is a Generalised NGD method.

Visualisation on Least-Squares Toy Problem

- iEF Adapted to the Curvature of the loss landscape
- No more Distorted Training Trajectory

Experiments

- We compare **EXACT** EF (empirical Fisher), iEF (improved EF) and SF (sampled Fisher) for practical and up-to-date optimization setups.
- We consider Parameter-Efficient Finetuning setup for pretrained Transformer models for GLUE (textual classification) and CIFAR (image classification) tasks.
	- Optimisation Performance
	- Approximation Quality to NG Updates

Optimisation Performance

● Overall Test Performance:

○ iEF achieves comparable performance with well-tuned baseline optimisers

○ iEF consistently outperforms SGD, EF and SF optimisers

○ EF consistently suffers from unstable training and is unable to train a decent model

Evaluation Framework for Approximation Quality

- **•** Traditional Methods usually requires Computation of the Exact Fisher matrix $\mathbf{F} \in \mathbb{R}^{P \times P}$
	- Too Expensive!
- Our Efficient Evaluation Framework for Large Scale Neural Networks
	- This Framework requires only a matrix-vector-product with Fisher matrix
		- Efficient to compute
		- Theoretically well-supported

Approximation Quality *w.r.t.* **Time and Damping**

Approximation quality of EF/SF/iEF updates for different damping values (x-axis is the damping value) (y-axis is the relative approximation indicator**↓**) at different training stages

- EF and SF updates are sensitive to damping values
- Optimal damping values for EF and SF vary greatly across training stages (and tasks)
- iEF has comparable performance to optimally damped SF updates
- iEF is robust to damping values (small damping would suffice)

Conclusions

- Identify a crucial flaw of EF: *the inversely-scaled projection* issue.
- We proposed the *improved EF (iEF)*, which is shown to be robust and achieve better quality.
- We proposed an efficient evaluation framework for the approximation quality to NG update.

Thank you

Contact Email: xw338@cam.ac.uk

Preliminaries

● Natural Gradient Descent (NGD) enjoys improved convergence

$$
\mathbf{F} := \sum_{n} \sum_{c} p_n(c) \left[\nabla_{\theta} \log p_n(c) \nabla_{\theta} \log p_n(c)^{\top} \right]
$$

 \odot Preconditioned update $\mathbf{F}^{-1}\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta})$ is impossible to compute for large scaled neural networks

Monte-Carlo Sampled Fisher (SF) is a well-supported approximation method

$$
\hat{\mathbf{F}}(K) = \frac{1}{K} \sum_{n=1}^{N} \sum_{k=1}^{K} [\nabla_{\theta} \log p_n(\hat{y}_n^{(k)}) \nabla_{\theta} \log p_n(\hat{y}_n^{(k)})^{\top}]
$$

 $\Phi \circ \hat{y}_n^{(k)} \sim p_{\theta}(y|\boldsymbol{x}_n)$ Too expensive, Hard to implement, Even for $K = 1$.

Empirical Fisher (EF) is a commonly used approximation for NGD

$$
\tilde{\mathbf{F}} \mathrel{\mathop:}= \sum\nolimits_n \left[\nabla_{\boldsymbol{\theta}} \log p_n(y_n) \nabla_{\boldsymbol{\theta}} \log p_n(y_n)^\top \right] = \nabla_{\boldsymbol{\theta}} \boldsymbol{l}^\top \nabla_{\boldsymbol{\theta}} \boldsymbol{l}
$$

 $\circ \ \nabla_{\theta} l$ is the empirical per-sample gradient. Fast, Easy to implement. Poor Quality.