

Spherical Frustum Sparse Convolution Network for LiDAR Point Cloud Semantic Segmentation

Yu Zheng, Shanghai Jiao Tong University

Guangming Wang, University of Cambridge

Jiuming Liu, Shanghai Jiao Tong University

Marc Pollefeys, ETH Zürich

Hesheng Wang, Shanghai Jiao Tong University

Introduction

Point-Based Semantic Segmentation

High Computational Complexity of Neighbor Querying

Non-efficient

2D Projection-Based Semantic Segmentation

Spherical Frustum V.S. Spherical projection

✓ Overcome Quantized Information Loss

✓ Preserve the Complete Geometric Structure of the Raw Point Cloud

Hash-Based Representation of Spherical Frustum

Spherical Frustum sparse Convolution (SFC)

Frustum Farthest Point Sampling (F2PS)

Target:

Efficient & Uniform Sampling of Point Cloud with Spherical Frustum Representation.

Point Limited and Efficient

• Farthest point sampling of the frustum points

Results on SemanticKITTI Dataset:

Approach	mIoU (%)	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign
RangeNet++ [2]	52.2	91.4	25.7	34.4	25.7	23.0	38.3	38.8	4.8	91.8	65.0	75.2	27.8	87.4	58.6	80.5	55.1	54.6	47.9	55.9
PolarNet 3	54.3	93.8	40.3	30.1	22.9	28.5	43.2	40.2	5.6	90.8	61.7	74.4	21.7	90.0	61.3	84.0	65.5	57.8	51.8	57.5
SqueezeSegV3 4	55.9	92.5	38.7	36.5	29.6	33.0	45.6	46.2	20.1	91.7	63.4	74.8	26.4	89.0	59.4	82.0	58.7	6 5 .4	49.6	58.9
SalsaNext 5	59.5	91.9	48.3	38.6	38.9	31.9	60.2	59.0	19.4	91.7	63.7	75.8	29.1	90.2	64.2	81.8	63.6	66.5	54.3	62.1
KPRNet 6	63.1	95.5	54.1	47.9	23.6	42.6	65.9	65.0	16.5	93.2	73.9	80.6	30.2	91.7	68.4	85.1	69.8	71.2	58.7	64.1
Lite-HDSeg [7]	63.8	92.3	40.0	55.4	37.7	39.6	59.2	71.6	54.1	93.0	68.2	78.3	29.3	91.5	65.0	78.2	65.8	55.1	59.5	67.7
RangeViT [8]	64.0	95.4	55.8	43.5	29.8	42.1	63.9	58.2	38.1	93.1	70.2	80.0	32.5	92.0	69.0	85.3	70.6	71.2	60.8	64.7
CENet 9	64.7	91.9	58.6	50.3	40.6	42.3	68.9	65.9	43.5	90.3	60.9	75.1	31.5	91.0	66.2	84.:	69.7	70.0	61.5	67.6
SFCNet (Ours)	65.0	95.1	64.2	63.2	23.5	45.6	78.3	73.1	26.4	87.9	65.6	71.9	29.1	91.1	64.5	83.1	72.6	69.6	62.6	67.2

Exceed existing 2D projection methods, with a significant performance improvement on small objects.

Visualization on Small Object Segmentation on SemanticKITTI:

Our model performs better segmentation for small objects across various scenes, such as intersections and urban streets!

Results on nuScenes Dataset :

Approach	mIoU (%)	barrier	bicycle	bus	car	construction	motorcycle	pedestrian	traffic-cone	trailer	truck	driveable	other flat	sidewalk	terrain	manmade	vegetation
RangeNet++ 2	65.5	66.0	21.3	77.2	80.9	30.2	66.8	69.6	52.1	54.2	72.3	94.1	66.6	63.5	70.1	83.1	79.8
PolarNet 3	71.0	74.7	28.2	85.3	90.9	35.1	77.5	71.3	58.8	57.4	76.1	96.5	71.1	74.7	74.0	87.3	85.7
SalsaNext 5	72.2	74.8	34.1	85.9	88.4	42.2	72.4	72.2	63.1	61.3	76.5	96.0	70.8	71.2	71.5	86.7	84.4
RangeViT [8]	75.2	75.5	40.7	88.3	90.1	49.3	79.3	77.2	66.3	65.2	80.0	96.4	71.4	73.8	73.8	89.9	87.2
SFCNet (Ours)	75.9	76.7	40.4	89.5	91.3	46.7	82.0	78.1	65.8	69.4	80.6	96.6	71.6	74.5	74.9	89.0	87.5

Surpass existing 2D projection methods on both two datasets.

Visualization on Small Object Segmentation on nuScenes:

Summary

SFCNet overcomes the quantized information loss and **enhances the performance** of 2D projection-based Point Cloud Semantic Segmentation.

- Spherical Frustum Structure overcoming Quantized information loss
- Memory-Efficient Hash-Based Representation of Spherical Frustum
- Efficient Spherical Frustum sparse Convolution & Frustum Farthest Point Sampling
- **Code** will be released at <u>https://github.com/IRMVLab/SFCNet</u>.

Future Work

...

- Expanding Receptive Field by combining Spherical Frustum with Transformer and Mamba
- Application on multi-modal fusion-based Point Cloud Semantic Segmentation
- Application on Point Cloud Registration & Scene Flow Estimation