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Background: Group Fairness in GNNs
Ø GNNs are powerful in graph representation learning, but face fairness issues.
Ø The prediction of GNNs should be independent of sensitive attributes, such as gender,
region, age …
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Background: Group Fairness in GNNs
Ø Definition 1. Statistical Parity (SP). The Statistical Parity requires the prediction probability
distribution to be independent of sensitive attributes, i.e. for any class 𝑦 ∈ 𝒴and any node v ∈ 𝒱 :

Ø Definition 2. Equal Opportunity (EO). The Equal Opportunity requires that the probability of
predicting correctly is independent of sensitive attributes, i.e. for any class 𝑦 ∈ 𝒴and any node
v ∈ 𝒱 , we can have:

𝑃 "𝑦! = 𝑦 𝑠 = 0 − 𝑃 "𝑦! = 𝑦 𝑠 = 1 = 0

𝑃 "𝑦! = 𝑦 𝑠 = 0, 𝑦! = 𝑦 − 𝑃 "𝑦! = 𝑦 𝑠 = 1, 𝑦! = 𝑦 = 0
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Motivation
Ø Many researchers have proposed effective fair GNN models, such as FairGNN[1], FairVGNN[2],
EDITS[3] . But such fairness is actually vulnerable to adversarial attacks.

Ø Existing fairness attacks on GNNs need to modify the connectivity between existing nodes, which is
hard and time-consuming in reality.

[1] Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information, WSDM 2021.
[2] Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage, KDD 2022.
[3] EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks, WWW 2022.

Can we launch a node-injection based fairness attack on GNNs?



NIFA – Node-Injection-based Fairness Attacks
Ø Core idea: Design multiple principles during the node injection, and then optimize the injected
nodes’ features.

Ø We design two principles to guide the node injection:
Ø Uncertainty-maximization principle
Ø Homophily-increase principle

Ø Multiple objective functions are further designed for injected nodes’ features.



Overview of NIFA



Attack Performance on GNNs

Ø NIFA can successfully deteriorate the fairness of both classic GNNs and fair GNNs.

Ø Different from conventional attacks, NIFA only slightly influence the utility of victim models.
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Ablation Study and Defense Discussions

Ø Both Uncertainty-maximization principle and Homophily-increase principle are crucial for NIFA.

Observations 

Defense Discussions 

Ø Select reliable training nodes.

Ø Strengthen connections among different groups.

Ø Introduce fairness audits.



Thanks for listening!
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