Demystify Mamba in Vision: A Linear Attention Perspective

Dongchen Han Ziyi Wang Zhuofan Xia Yizeng Han Yifan Pu Chunjiang Ge Jun Song Shiji Song Bo Zheng Gao Huang

Background

Transformers has a **Quadratic Complexity** $O(N^2d)$ with respect to sequence length.

High Resolution Images Videos

A *promising* method to deal with *high-resolution* images!

Mamba: a Powerful Selective State Space Model

Mamba

✓ *High expressive capability* \checkmark Linear complexity $O(Nd^2)$ ✓ *Global modeling*

1. Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.

NEW REA

Vision Mamba (Vim)

Linear

 $h'_{k,i} = \overline{A}_i h_{k,i-1} + (\overline{B}_i + \overline{C}_i)$

Motivation

- *1. Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.*
- *Learning. PMLR, 2020: 5156-5165.*
- \checkmark Linear complexity $O(N)$
- ✓ Global modeling
- ✓ **High expressive capability**

$$
\boldsymbol{h}_i = \widetilde{\boldsymbol{A}}_i \odot \boldsymbol{h}_{i-1} + \boldsymbol{B}_i (\boldsymbol{\Delta}_i \odot \boldsymbol{x}_i),
$$

$$
\boldsymbol{y}_i = \boldsymbol{C}_i \boldsymbol{h}_i / 1 + \boldsymbol{D} \odot \boldsymbol{x}_i.
$$

- \checkmark Linear complexity $O(N)$
- ✓ Global modeling
- **Inferior performance**

$$
\boldsymbol{y}_i = \!\sum_{j=1}^{N} \! \frac{\boldsymbol{Q}_i \boldsymbol{K}_j^\top}{\sum_{j=1}^{N} \boldsymbol{Q}_i \boldsymbol{K}_j^\top} \boldsymbol{V}_j = \frac{\boldsymbol{Q}_i \!\left(\sum_{j=1}^{N} \boldsymbol{K}_j^\top \boldsymbol{V}_j\right)}{\boldsymbol{Q}_i \!\left(\sum_{j=1}^{N} \boldsymbol{K}_j^\top\right)}
$$

2. Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International Conference on Machine

Mamba

Linear Attention

Linear Attention

Linear Attention $\mathbf{0} = \mathbf{Q} \mathbf{K}^T \mathbf{V}$

 Inferior performance \checkmark Linear complexity $O(Nd^2)$

Carefully designed kernels are introduced as the approximation of the original similarity function:

$$
\mathbfit{Q} \!=\! \phi(\mathbfit{x}\mathbf{W}_Q), \mathbfit{K} \!=\! \phi(\mathbfit{x}\mathbf{W}_K), \mathbfit{V} \!=\! \mathbfit{x}\mathbf{W}_V
$$

$$
\boldsymbol{y}_i = \!\sum_{j=1}^N \! \frac{\boldsymbol{Q}_i \boldsymbol{K}_j^\top}{\sum_{j=1}^N \boldsymbol{Q}_i \boldsymbol{K}_j^\top} \boldsymbol{V}_j = \frac{\boldsymbol{Q}_i \!\left(\sum_{j=1}^N \boldsymbol{K}_j^\top \boldsymbol{V}_j\right)}{\boldsymbol{Q}_i \!\left(\sum_{j=1}^N \boldsymbol{K}_j^\top\right)}
$$

1. Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International Conference on Machine Learning. PMLR, 2020: 5156-5165.

Recurrent Linear Attention

Causal linear attention:

$$
\boldsymbol{y}_i = \frac{\boldsymbol{Q}_i\left(\sum_{j=1}^{i} \boldsymbol{K}_j^\top \boldsymbol{V}_j\right)}{\boldsymbol{Q}_i\left(\sum_{j=1}^{i} \boldsymbol{K}_j^\top\right)} \triangleq \frac{\boldsymbol{Q}_i\boldsymbol{S}_i}{\boldsymbol{Q}_i\boldsymbol{Z}_i}, \quad \boldsymbol{S}_i =
$$

Non-causal linear attention (common linear attention):

$$
\boldsymbol{y}_i = \sum_{j=1}^N \frac{\boldsymbol{Q}_i \boldsymbol{K}_j^\top}{\sum_{j=1}^N \boldsymbol{Q}_i \boldsymbol{K}_j^\top} \boldsymbol{V}_j = \frac{\boldsymbol{Q}_i \Bigl(\sum_{j=1}^N}{\boldsymbol{Q}_i \Bigl(\sum_{j=1}^N
$$

Recurrent linear attention form:

 $\boldsymbol{S}_i = \boldsymbol{S}_{i-1} + \boldsymbol{K}_i^\top \boldsymbol{V}_i, \ \ \boldsymbol{Z}_i = \boldsymbol{Z}_{i-1} + \boldsymbol{K}_i^\top, \quad \boldsymbol{y}_i = \boldsymbol{Q}_i S_i / \boldsymbol{Q}_i \boldsymbol{Z}_i.$

$$
\begin{aligned}\n\boldsymbol{h}_i &= \boldsymbol{A}_i \odot \boldsymbol{h}_{i-1} + \boldsymbol{B}_i (\Delta_i \odot x_i), \\
y_i &= \boldsymbol{C}_i h_i + D \odot x_i, \\
x_i, \Delta_i \in \mathbb{R}, \ \ \widetilde{\boldsymbol{A}}_i, \boldsymbol{B}_i, \boldsymbol{h}_{i-1}, \boldsymbol{h}_i \in \mathbb{R}^{d \times 1}, \\
y_i & \in \mathbb{R}, \ \ \boldsymbol{C}_i \in \mathbb{R}^{1 \times d}, \ \ D \in \mathbb{R}.\n\end{aligned}
$$

 $\boxed{1}$ $\boxed{A_i \mathbf{h}_{i-1} = A_i \odot \mathbf{h}_{i-1}}$ $\boxed{2}$ $\boxed{B_i x_i = \Delta_i B_i x_i = B_i (\Delta_i x_i) = B_i (\Delta_i \odot x_i)}$ $\boxed{3}$ $D x_i = D \odot x_i$

Selective State Space Model (Scalar Input)

$$
\boldsymbol{h}_i = \overline{\boldsymbol{A}}_i \boldsymbol{h}_{i-1} + \overline{\boldsymbol{B}}_i x_i,
$$

$$
y_i = \boldsymbol{C}_i \boldsymbol{h}_i + D x_i,
$$

 $x_i \in \mathbb{R}, \ \ \overline{\bm{A}}_i \in \mathbb{R}^{d \times d}, \ \ \overline{\bm{B}}_i, \bm{h}_{i-1}, \bm{h}_i \in \mathbb{R}^{d \times 1},$ $y_i \in \mathbb{R}, \ C_i \in \mathbb{R}^{1 \times d}, \ D \in \mathbb{R}.$

Selective State Space Model (Vector Input)

 $\bm{h}_i = \widetilde{\bm{A}}_i \odot \bm{h}_{i-1} + \bm{B}_i(\bm{\Delta}_i \odot \bm{x}_i), \quad \bm{x}_i, \bm{\Delta}_i \in \mathbb{R}^{1 \times C}, \enspace \widetilde{\bm{A}}_i, \bm{h}_{i-1}, \bm{h}_i \in \mathbb{R}^{d \times C}, \enspace \bm{B}_i \in \mathbb{R}^{d \times 1}$ $\boldsymbol{y}_i \in \mathbb{R}^{1 \times C}, \enspace \boldsymbol{C}_i \in \mathbb{R}^{1 \times d}, \enspace \boldsymbol{D} \in \mathbb{R}^{1 \times C},$ $\boldsymbol{y_i} = \boldsymbol{C_i} \boldsymbol{h_i} + \boldsymbol{D} \odot \boldsymbol{x_i},$

paper code

Mamba v.s. Linear Attention Transformer

Four differences:

 $\boxed{1}$ Δ_i : input gate

 $\widetilde{4}$: input gate (2) \tilde{A}_i : forget gate

(3) $D \odot x_i$: shortcut (4) $Q_i Z_i$: attention normalization

(5) Multi-head design: (6) Different macro design:

Linear Attention Transformer Mamba

- Selective SSM resembles single-head attention
- Linear attention commonly employ multi-head design

Mamba can be viewed as linear attention Transformer with **six special designs**:

- **(1)** *input gate*
- **(2)** *forget gate*
- **(3)** *shortcut*
- **(4)** *no attention normalization*
- **(5)** *single-head design*
- **(6)** *modified block structure*

Empirical Study

The **forget gate** and **block design** tend to be the core contributors!

Empirical Study

- The **forget gate** needs *recurrent calculation*, which is not ideal for vision models.
- Proper **positional encoding** can function as the forget gate in vision tasks,

while preserving *parallelizable computation*.

Empirical Study

Based on these findings, we propose a **Mamba-Inspired Linear Attention (MILA)** model by incorporating the merits of Mamba's two key designs

into linear attention.

Mamba

MILA

89M

96M

15.4G | 83.9

16.2G | 85.3

Empirical Study: ImageNet Classification

 \cdot 3

 \cdot

 $.7$

 $\boldsymbol{.8}$

VMamba-B $[31]$

MILA-B

Empirical Study: Efficiency

(b) M_{\odot} D CNN $2x$ on COCO

Empirical Study: Object Detection

Take-away Messages

✓ We reveal the *surprisingly close relationship* between the powerful Mamba and subpar linear attention Transformer

✓ We identify that the *forget gate* and *block design* are the core

✓ We propose *Mamba-Inspire Linear Attention (MILA)* model, enjoying *high performance* while maintaining *parallel*

-
- factors behind Mamba's success
- *computation* and *fast inference speed*.

Thank you!

Contact: hdc23@mails.tsinghua.edu.cn

