

Are High-Degree Representations Really Unnecessary in

Equivariant Graph Neural Networks?

Jiacheng Cen, Anyi Li, Ning Lin, Yuxiang Ren, Zihe Wang, Wenbing Huang 2024.10.30

Global Features in Geometric GNNs

(c) Virtual Nodes in FastEGNN (ICML'24)

(d) Mesh in Neural P3M (NeurIPS'24)

Symmetric Graph

C60 & Carbon Nanotube

Dodecahedron Icosahedron

Figure 1: Common symmetric graphs. Equivariant GNNs on symmetric graphs will degenerate to a zero function if the degree of their representations is fixed as 1.

Symmetrical Structure

Coincides with itself under certain transformations

 $\forall \mathfrak{h} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

The Degeneration Phenomenon

Theoretical Results

Symmetrical Structure

Coincides with itself under certain transformations

 $\forall \mathfrak{h} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

Using the definition of **symmetric structure** and **equivariant function**, we can get the equation

$$
f^{(l)}(\mathcal{G}) = f^{(l)}(\mathfrak{h} \cdot \mathcal{G})
$$

= $\rho^{(l)}(\mathfrak{h}) \cdot f^{(l)}(\mathcal{G})$
= $\left(\frac{1}{|\mathfrak{H}|} \sum_{\mathfrak{h} \in \mathfrak{H}} \rho^{(l)}(\mathfrak{h})\right) \cdot f^{(l)}(\mathcal{G})$
 $\stackrel{\triangle}{=} \rho^{(l)}(\mathfrak{H}) f^{(l)}(\mathcal{G})$

Note that the types of point groups are **finite**, so we only need to **enumerate all the groups** to represent the average.

Symmetrical Structure

Coincides with itself under certain transformations

 $\overline{\forall} \overline{\mathfrak{h}} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

Using the definition of **symmetric structure** and **equivariant function**, we can get the equation $(I_{2l+1} - \rho^{(l)}(\mathfrak{H})) f^{(l)}(\mathcal{G}) = 0$ **The Degeneration Left Matrix is full-rank Phenomenon** det $(I_{2l+1} - \rho^{(l)}(\mathfrak{H}) \rvert \neq 0$ $f^{(l)}(\mathcal{G})\equiv 0$

Note that the types of point groups are **finite**, so we only need to **enumerate all the groups** to represent the average.

Motivation for HEGNN

Trace of point group average representation

Prediction of degenerate results for various symmetric graphs

Difficulties

 Previous models generate **all representations of** $|l_1 - l_2|$ ~ $l_1 + l_2$ through CG tensor product, and cannot extract representations of special orders for verification

Additional requirements

- Can the model used for verification have **good application value**? For example, use it on **actual datasets**?
- \triangleright Traditional high-order models use CG tensor products, with a complexity of up to $O(L^6)$, Can we design a model with **lower complexity**?
- Can you explain the **theoretical basis** for using high-order representations other than distinguishing symmetric structures?

HEGNN: Use the scalarization-trick to introduce high-order representations, which reduce the time complexity to $O(L^2)$ from $O(L^6)$ of CG tensor-product

- \triangleright Initialization: Use spherical harmonics and calculate coefficients for different orders
- Expression ability: Use the relationship between spherical harmonics and Legendre polynomials to prove that **HEGNN can fully express all inner product information of geometric graphs**

Architecture of HEGNN

Initialization of high-degree steerable feature

$$
\tilde{\bm{v}}_{i,\mathtt{init}}^{(l)} = \frac{1}{|\mathcal{N}(i)|}\sum_{j \in \mathcal{N}(i)} \varphi_{\tilde{\bm{v}},\mathtt{init}}^{(l)}(\bm{m}_{ij,\mathtt{init}}) \cdot Y^{(l)} \Big(\tfrac{\vec{x}_i}{\|\vec{x}_i\|}
$$

Calculation of cross-degree invariant messages

$$
d_{ij} = \|\vec{x}_i - \vec{x}_j\|, \quad z_{ij}^{(l)} = \left\langle \tilde{v}_i^{(l)}, \tilde{v}_j^{(l)} \right\rangle, \quad \boldsymbol{m}_{ij} = \varphi_{\boldsymbol{m}} \left(\boldsymbol{h}_i, \boldsymbol{h}_j, \boldsymbol{e}_{ij}, d_{ij}^2, \oplus_{l=0}^L z_{ij}^{(l)} \right)
$$

Aggregation of neighbor messages

$$
\Delta \bm{h}_i = \varphi_{\bm{h}} \left(\bm{h}_i, \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \bm{m}_{ij} \right), \ \Delta \vec{\bm{x}}_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \varphi_{\vec{\bm{x}}}(\bm{m}_{ij}) \cdot (\bm{\vec{x}}_i - \vec{\bm{x}}_j), \\ \Delta \tilde{\bm{v}}_i^{(l)} = \sqrt{\mathcal{N}(i)} \sum_{j \in \mathcal{N}(i)} \varphi_{\tilde{\bm{v}}}^{(l)}(\bm{m}_{ij}) \cdot \left(\tilde{\bm{v}}_i^{(l)} - \tilde{\bm{v}}_j^{(l)} \right)
$$

Aggregation of neighbor messages

$$
\displaystyle \mathbb{B}_{l=0}^{L} \Delta \tilde{\bm{v}}_i^{(l)} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} 1 \otimes_{\text{cg}}^{\varphi_{\tilde{\bm{v}}}(\bm{m}_{ij})} \left(\oplus_{l=0}^{L} \left(\tilde{\bm{v}}_i^{(l)} - \tilde{\bm{v}}_j^{(l)} \right) \right)
$$

Architecture of HEGNN

Theorem 4.1. For any geometric graph, there exists a bijection between the set of inner products $\{z_{ij}^{(l)}\}_{l=1}^{|\mathbb{A}_{ij}|}$ given by Eq. (10) and the set of edge angles $\mathbb{A}_{ij} = \{\theta_{is,jt} \coloneqq \langle \vec{x}_{is}, \vec{x}_{jt} \rangle\}_{s \in \mathcal{N}(i), t \in \mathcal{N}(j)}$. $\left\langle \sum_{s \in \mathcal{N}(i)} Y^{(l)}(\vec{x}_{is}) \, , \sum_{t \in \mathcal{N}(j)} Y^{(l)}(\vec{x}_{jt}) \right\rangle = \frac{4\pi}{2l+1} \sum_{s \in \mathcal{N}(i)} \sum_{t \in \mathcal{N}(j)} P^{(l)}(\langle \vec{x}_{is}, \vec{x}_{jt} \rangle) \, ,$

Experiments

 0.91 ± 0.06 10.56 ± 0.05 0.55 ± 0.01

 0.94 ± 0.10 10.55 ± 0.16 0.52 ± 0.01

 0.88 ± 0.02 10.56 \pm 0.33 0.54 \pm 0.01

Symmetric polyhedron experiment: Theoretical and experimental results are completely consistent

 k -fold (odd) k -fold (even) Tetrahedron Cube(Hexahedron) Octahedron

Dodecahedron **Icosahedron**

N-body (N=5, 20, 50, 100): consistently outperforms other models

HEGNN_{$l \leq 2$} 10.04 \pm 0.45 61.80 \pm 5.92 4.63 \pm 0.01

HEGNN_{$l \leq 3$} 10.20 \pm 0.23 62.82 \pm 4.25 4.63 \pm 0.01

HEGNN_{$l \leq 6$} 9.94 \pm 0.07 59.93 \pm 5.21 4.62 \pm 0.01

MD-17: outperforms most molecules (6/8)

 12.85 ± 0.01

 12.85 ± 0.02

 12.85 ± 0.01

 $0.39 + 0.01$

 $0.37_{\pm 0.01}$

 $0.37\scriptstyle\pm 0.02$

Most molecules may **not be symmetrical**, and even affected by molecular vibration, the structural changes are enough to **eliminate the original symmetry**.

So what are the **advantages of HEGNN** at this time? The answer is **better robustness**!

Table 5: Take the tetrahedron as an example and compare the cases of EGNN, $\text{HEGNN}_{l=3}$, and HEGNN_{$l < 3$} when adding noise perturbations. Here, ε represents the ratio of noise, and the modulus of the noise obeys $\mathcal{N}(0, \varepsilon \cdot \mathbb{E}[\|\vec{x} - \vec{x}_c\|] \cdot I)$. It can be observed that the performance of EGNN is slightly improved in the presence of noise (from 50% when $\varepsilon = 0.01$ to 60% when $\varepsilon = 0.5$), while **HEGNN** demonstrates better robustness.

Reference

[1] Puny O, Atzmon M, Smith E J, et al. Frame Averaging for Invariant and Equivariant Network Design. ICLR'22.

[2] Han J, Huang W, Xu T, et al. Equivariant graph hierarchy-based neural networks[C]. NeurIPS'22.

[3] Zhang Y, Cen J, Han J, et al. Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning. ICML'24.

[4] Wang Y, Cheng C, Li S, et al. Neural P3M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs. NeurIPS'24.

[5] Joshi C K, Bodnar C, Mathis S V, et al. On the expressive power of geometric graph neural networks. ICML'23.

[6] Satorras V G, Hoogeboom E, Welling M. E (n) equivariant graph neural networks. ICML'21.

[7] Frank J T, Unke O T, Müller K R, et al. A Euclidean transformer for fast and stable machine learned force fields. Nature Communications'24.

