

Are High-Degree Representations Really Unnecessary in

Equivariant Graph Neural Networks?

Jiacheng Cen, Anyi Li, Ning Lin, Yuxiang Ren, Zihe Wang, Wenbing Huang 2024.10.30

Global Features in Geometric GNNs

(c) Virtual Nodes in FastEGNN (ICML'24)

(d) Mesh in Neural P³M (NeurIPS'24)

Symmetric Graph

C60 & Carbon Nanotube

Figure 1: Common symmetric graphs. Equivariant GNNs on symmetric graphs will degenerate to a zero function if the degree of their representations is fixed as 1.

Symmetrical Structure

Coincides with itself under certain transformations

 $orall \mathfrak{h} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

The Degeneration Phenomenon

Theoretical Results

Symmetrical Structure

Coincides with itself under certain transformations

 $orall \mathfrak{h} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

Using the definition of **symmetric structure** and **equivariant function**, we can get the equation

$$\begin{split} ^{(l)}(\mathcal{G}) &= f^{(l)}(\mathfrak{h} \cdot \mathcal{G}) \\ &= \rho^{(l)}(\mathfrak{h}) \cdot f^{(l)}(\mathcal{G}) \\ &= \left(\frac{1}{|\mathfrak{H}|} \sum_{\mathfrak{h} \in \mathfrak{H}} \rho^{(l)}(\mathfrak{h})\right) \cdot f^{(l)}(\mathcal{G}) \\ &\triangleq \rho^{(l)}(\mathfrak{H}) f^{(l)}(\mathcal{G}) \end{split}$$

Note that the types of point groups are **finite**, so we only need to **enumerate all the groups** to represent the average.

Symmetrical Structure

Coincides with itself under certain transformations

 $orall \mathfrak{h} \in \mathfrak{H}, \mathfrak{h} \cdot \mathcal{G} = \mathcal{G}$

Using the definition of **symmetric structure** and equivariant function, we can get the equation $\left(I_{2l+1} - \rho^{(l)}(\mathfrak{H})\right) f^{(l)}(\mathcal{G}) = 0$ **The Degeneration Left Matrix** is full-rank Phenomenon $\det\left(I_{2l+1} - \rho^{(l)}(\mathfrak{H})\right) \neq 0$ $f^{(l)}(\mathcal{G}) \equiv 0$

Note that the types of point groups are **finite**, so we only need to **enumerate all the groups** to represent the average.

Motivation for HEGNN

Trace of point group average representation

Group	Notation	Data for Wigner-D matrix traces $D^{(l)}(H)$	
Reflection group	C_i	$(2l+1) \cdot \delta_{l \mod 2,0}$	
Cyclic group	C_n	$2\lfloor l/n \rfloor + 1$	
Dihedral group	D_n	$\lfloor l/n floor + \delta_{l \mod 2,0}$	
Tetrahedral group	T	r = 6 $b = 100110$	
Octahedral group	O	r = 12 $b = 100010101110$	
Icosahedral group	Ι	r = 30 $b = 100000100010001101011101111$	110

Prediction of degenerate results for various symmetric graphs

Symmetric G	raph ${\cal G}$	Symme	try Group $\mathfrak{H} \in \mathfrak{l}$	$\mathbb{H}(\mathcal{G}) = l \mathbb{I}$	eading to $f^{(l)}($	$\mathcal{G})\equiv 0$
2k-fold			C_i, D_{2k}	<i>l</i> i	s odd	
(2k+1)-fold	1		D_{2k+1}		< 2k+1 and l	is odd
Tetrahedron			T		$\{1, 2, 5\}$	
Cube/Octahe			C_i, O	-	= 2 or l is odd	
Dodecahedro	n/Icosahedroi	1	C_i, I	$l \in$	$\in \{2, 4, 8, 14\}$	or l is odd
	The second	Lale and a second second				
k-fold (odd)	k-fold (even)	Tetrahedron	Cube(Hexahedron)	Octahedron	Dodecahedron	Icosahedron

Difficulties

Previous models generate all representations of |l₁ - l₂|~l₁ + l₂ through CG tensor product, and cannot extract representations of special orders for verification

Additional requirements

- Can the model used for verification have good application value? For example, use it on actual datasets?
- > Traditional high-order models use CG tensor products, with a complexity of up to $O(L^6)$, Can we design a model with lower complexity?
- Can you explain the theoretical basis for using high-order representations other than distinguishing symmetric structures?

HEGNN: Use the scalarization-trick to introduce high-order representations, which reduce the time complexity to $O(L^2)$ from $O(L^6)$ of CG tensor-product

- > Initialization: Use spherical harmonics and calculate coefficients for different orders
- Expression ability: Use the relationship between spherical harmonics and Legendre polynomials to prove that HEGNN can fully express all inner product information of geometric graphs

Architecture of HEGNN

□ Initialization of high-degree steerable feature

$$\tilde{\boldsymbol{v}}_{i,\texttt{init}}^{(l)} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \varphi_{\tilde{\boldsymbol{v}},\texttt{init}}^{(l)}(\boldsymbol{m}_{ij,\texttt{init}}) \cdot Y^{(l)} \left(\frac{\boldsymbol{\vec{x}_i} - \boldsymbol{\vec{x}_j}}{\|\boldsymbol{\vec{x}_i} - \boldsymbol{\vec{x}_j}\|} \right)$$

□ Calculation of cross-degree invariant messages

$$d_{ij} = \|\vec{\boldsymbol{x}}_i - \vec{\boldsymbol{x}}_j\|, \quad z_{ij}^{(l)} = \left\langle \tilde{\boldsymbol{v}}_i^{(l)}, \tilde{\boldsymbol{v}}_j^{(l)} \right\rangle, \quad \boldsymbol{m}_{ij} = \varphi_{\boldsymbol{m}} \left(\boldsymbol{h}_i, \boldsymbol{h}_j, \boldsymbol{e}_{ij}, d_{ij}^2, \oplus_{l=0}^L z_{ij}^{(l)} \right)$$

$$\begin{array}{|c|c|} \square & \text{Aggregation of neighbor messages} \\ & \Delta \boldsymbol{h}_{i} = \varphi_{\boldsymbol{h}} \left(\boldsymbol{h}_{i}, \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \boldsymbol{m}_{ij} \right), \ \Delta \vec{\boldsymbol{x}}_{i} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \varphi_{\vec{\boldsymbol{x}}}(\boldsymbol{m}_{ij}) \cdot (\vec{\boldsymbol{x}}_{i} - \vec{\boldsymbol{x}}_{j}), \\ & \Delta \tilde{\boldsymbol{v}}_{i}^{(l)} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \varphi_{\vec{\boldsymbol{v}}}^{(l)}(\boldsymbol{m}_{ij}) \cdot \left(\tilde{\boldsymbol{v}}_{i}^{(l)} - \tilde{\boldsymbol{v}}_{j}^{(l)} \right) \end{array}$$

□ Aggregation of neighbor messages

$$\bigoplus_{l=0}^{L} \Delta \tilde{\boldsymbol{v}}_{i}^{(l)} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} 1 \otimes_{\mathrm{cg}}^{\varphi_{\tilde{\boldsymbol{v}}}(\boldsymbol{m}_{ij})} \left(\bigoplus_{l=0}^{L} \left(\tilde{\boldsymbol{v}}_{i}^{(l)} - \tilde{\boldsymbol{v}}_{j}^{(l)} \right) \right)$$

Architecture of HEGNN

	The message pas	sing formulas of our HEG	SNN, EGNN and TFN	
	EGNN [1]	TFN [12]	HEGNN (Ours)	
Msg	$\begin{split} \boldsymbol{m}_{ij} &= \phi_{\boldsymbol{m}}(\boldsymbol{h}_i, \boldsymbol{h}_j, \boldsymbol{e}_{ij}, d_{ij}^2) \\ \boldsymbol{\vec{m}}_{ij} &= \varphi_{\boldsymbol{\vec{x}}}(\boldsymbol{m}_{ij}) \cdot (\boldsymbol{\vec{x}}_i - \boldsymbol{\vec{x}}_j) \end{split}$	$ ilde{oldsymbol{m}}_{ij}^{(\mathbb{L})} = ilde{oldsymbol{v}}_{i}^{(\mathbb{L})} \otimes_{ ext{cg}}^{oldsymbol{W}(d_{ij})} Y^{(\mathbb{L})} \left(rac{ec{oldsymbol{x}}_{ij}}{\ ec{oldsymbol{x}}_{ij}\ } ight)$	$\boldsymbol{m}_{ij} = \varphi_{\boldsymbol{m}}(\boldsymbol{h}_i, \boldsymbol{h}_j, \boldsymbol{e}_{ij}, d_{ij}^2, \bigoplus_{l \in \mathbb{L}} z_{ij}^{(l)})$ $\boldsymbol{\vec{m}}_{ij} = \varphi_{\boldsymbol{\vec{x}}}(\boldsymbol{m}_{ij}) \cdot (\boldsymbol{\vec{x}}_i - \boldsymbol{\vec{x}}_j)$ $\boldsymbol{\vec{v}}_{ij}^{(l)} = \varphi_{\boldsymbol{\tilde{v}}}^{(l)}(\boldsymbol{m}_{ij}) \cdot (\boldsymbol{\tilde{v}}_i^{(l)} - \boldsymbol{\tilde{v}}_j^{(l)})$	_
Agg	$m{m}_i = lpha_i \sum_{j \in \mathcal{N}(i)} m{m}_{ij}$ $m{ec{m}}_i = lpha_i \sum_{j \in \mathcal{N}(i)} m{ec{m}}_{ij}$	$\tilde{\boldsymbol{m}}_{i}^{(\mathbb{L})} = \alpha_{i} \sum_{j \in \mathcal{N}(i)} \tilde{\boldsymbol{m}}_{ij}^{(\mathbb{L})}$	$\boldsymbol{m}_{i} = \alpha_{i} \sum_{j \in \mathcal{N}(i)} \boldsymbol{m}_{ij}$ $\boldsymbol{\vec{m}}_{i} = \alpha_{i} \sum_{j \in \mathcal{N}(i)} \boldsymbol{\vec{m}}_{ij}$ $\boldsymbol{\tilde{m}}_{i}^{(l)} = \alpha_{i} \sum_{j \in \mathcal{N}(i)} \boldsymbol{\tilde{m}}_{ij}^{(l)}$	
Upd	$egin{aligned} \Delta oldsymbol{h}_i &= arphi_{oldsymbol{h}}(oldsymbol{h}_i,oldsymbol{m}_i) \ \Delta ec{oldsymbol{x}}_i &= ec{oldsymbol{m}}_i \end{aligned}$	$\Delta oldsymbol{v}_i^{(\mathbb{L})} = oldsymbol{m}_i^{(\mathbb{L})}$	$egin{aligned} \Delta oldsymbol{h}_i &= arphi_{oldsymbol{h}}(oldsymbol{h}_i,oldsymbol{m}_i) \ \Delta ec{oldsymbol{x}}_i &= ec{oldsymbol{m}}_i \ \Delta ec{oldsymbol{v}}_i^{(l)} &= ec{oldsymbol{m}}_i^{(l)} \end{aligned}$	

Theorem 4.1. For any geometric graph, there exists a bijection between the set of inner products $\{z_{ij}^{(l)}\}_{l=1}^{|\mathbb{A}_{ij}|}$ given by Eq. (10) and the set of edge angles $\mathbb{A}_{ij} = \{\theta_{is,jt} \coloneqq \langle \vec{x}_{is}, \vec{x}_{jt} \rangle\}_{s \in \mathcal{N}(i), t \in \mathcal{N}(j)}$. $\left\langle \sum_{s \in \mathcal{N}(i)} Y^{(l)}(\vec{x}_{is}), \sum_{t \in \mathcal{N}(j)} Y^{(l)}(\vec{x}_{jt}) \right\rangle = \frac{4\pi}{2l+1} \sum_{s \in \mathcal{N}(i)} \sum_{t \in \mathcal{N}(j)} P^{(l)}(\langle \vec{x}_{is}, \vec{x}_{jt} \rangle),$

Experiments

Symmetric polyhedron experiment: Theoretical and experimental results are completely consistent

k-fold (odd) k-fold (even)

Tetrahedron Cube(Hexahedron) Octahedron

Dodecahedron Icosahedron

		Rotational symmetry							
	GNN Layer	Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron			
r.	E -GNN $_{l=1}$	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
Cart.	$\text{GVP-GNN}_{l=1}$	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
	HEGNN _{l=1}	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
F	$\text{HEGNN}_{l=2}$	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
Spherical	$\text{HEGNN}_{l=3}$	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
hei	$\text{HEGNN}_{l=4}$	100.0 ± 0.0	90.0 ±30.0	90.0 ±30.0	50.0 ± 0.0	50.0 ± 0.0			
	$\text{HEGNN}_{l=5}$	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
	$\text{HEGNN}_{l=6}$	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0			
Type	$\text{HEGNN}_{l=7}$	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
Single	$\text{HEGNN}_{l=8}$	100.0 ± 0.0	90.0 ±30.0	90.0 ±30.0	50.0 ± 0.0	50.0 ± 0.0			
ing.	$\text{HEGNN}_{l=9}$	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
ŝ	$\text{HEGNN}_{l=10}$	100.0 ± 0.0	100.0 ± 0.0	95.0 ±15.0	100.0 ± 0.0	100.0 ± 0.0			
	$\text{HEGNN}_{l=11}$	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
	HEGNN/TFN/MACE _{l<2}	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
þ.	HEGNN/TFN/MACE $_{l<3}$	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
Sph.	HEGNN/TFN/MACE $_{l < 4}^{-}$	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0			
	HEGNN/TFN/MACE $_{l\leq 6}^{-}$	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0			

N-body (N=5, 20, 50, 100): consistently outperforms other models

HEGNN $_{l \le 6}$ 9.94±0.07 59.93±5.21 4.62±0.01

MD-17: outperforms most molecules (6/8)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				/		-			/ M	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-b	ody		20-body		50-body		100-bo	ədy
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Relati			Relative				Relative
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$(\times 10^{-2})$	Time	e (×1	0^{-2})	Time	$(\times 10^{-2})$	Time	$(\times 10^{-2})$	Time
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Linear		7.72	0.01	. 10	.12	0.02	11.81	0.02	12.69	0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MPNN [35]		1.80	0.49	2.	50	0.51	2.96	0.50	3.55	0.45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SchNet [36]		11.31	2.93	17	.72	6.24	22.14	31.63	22.14	27.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RF [34]		1.51	0.54	3.	41	0.65	4.75	0.67	5.72	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GVP-GNN	[37]	7.26	2.36	5.	76	2.38	7.07	2.42	7.55	2.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EGNN [1]		0.65	1.00) 1.	01	1.00	1.00	1.00	1.36	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TFN _{l<2}		1.49	2.69	1.	86	3.19	2.20	2.87	3.42	6.58
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.76	3.91	1.	87	4.54	1.94	4.89	OOM	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$SE(3)$ -Tr. _{$l \leq 2$}	2	3.24	4.94	3.	19	5.88	2.54	5.97	2.33	5.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HEGNN _{l<1}		0.52	1.77	<u> </u>	<u>79</u>	1.84	0.88	1.60	1.13	1.45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\text{HEGNN}_{l < 2}^{-}$		0.47	1.88	6 0. '	78	1.94	0.90	1.71	0.97	1.55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\text{HEGNN}_{l < 3}^{-}$		<u>0.48</u>	2.11	0.	80	2.23	0.84	1.84	0.94	1.61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.69	2.14	0.	86	2.43	0.96	2.18	0.86	1.90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c} \text{EGNN} \\ \text{EGNNReg} \\ \text{I}3.82 \pm 0.19 \\ \text{I}0.14 \pm 0.03 \\$		Aspir	in Ber	zene	Ethanol	Malo	naldehyde	Naphthalene	Salicylic	Toluene	Uracil
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RF	$10.94 \pm$	0.01 103.7	2±1.29 4	4.64±0.01	13	.93±0.03	0.50 ± 0.01	1.23 ± 0.01	10.93 ± 0.04	0.64 ± 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EGNN	$14.41 \pm$	0.15 62.4	0±0.53 4	4.64 ± 0.01	13	$.64 \pm 0.01$	0.47 ± 0.02	1.02 ± 0.02	11.78 ± 0.07	0.64 ± 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EGNNReg	$13.82 \pm$	0.19 61.6	8±0.37 (6.06±0.01	13	.49±0.06	0.63 ± 0.01	1.68 ± 0.01	11.05 ± 0.01	0.66 ± 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GMN	$10.14\pm$	0.03 48.1	$2_{\pm 0.40}$ 4	4.83 ± 0.01	13	$.11 \pm 0.03$	0.40 ± 0.01	0.91 ± 0.01	$10.22{\scriptstyle\pm0.08}$	$0.59{\scriptstyle \pm 0.01}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$TFN_{l < 2}$	12.37±	0.18 58.4	<u>8</u> ±1.98 4	4.81±0.04	13	.62±0.08	0.49 ± 0.01	1.03±0.02	10.89±0.01	0.84 ± 0.02
$HEGNN_{l \le 2} \underline{10.04} \pm 0.45 61.80 \pm 5.92 \underline{\overline{4.63}} \pm 0.01 \qquad \overline{12.85} \pm 0.01 \qquad \overline{0.39} \pm 0.01 \qquad \overline{0.91} \pm 0.06 10.56 \pm 0.05 0.55 \pm 0.01 \overline{0.91} \pm 0.06 10.56 \pm 0.05 0.55 \pm 0.01 \overline{0.91} \pm 0.06 \overline{0.91} \pm 0.$		$11.12 \pm$	0.06 68.1	1±0.67 4	4.74±0.13	13	$.89 \pm 0.02$	0.52 ± 0.01	1.13 ± 0.02	10.88 ± 0.06	$0.79{\scriptstyle \pm 0.02}$
	HEGNN _{l<1}	$10.32 \pm$	0.58 62.5	3±7.62 4	4. <u>63</u> ±0.01	12	.85±0.01	0.38 ± 0.01	0.90±0.05	10.56±0.10	0.56±0.02
$HEGNN_{l\leq 3} 10.20 \pm 0.23 62.82 \pm 4.25 \overline{4.63} \pm 0.01 \qquad \overline{12.85} \pm 0.02 \qquad 0.37 \pm 0.01 \qquad 0.94 \pm 0.10 \underline{10.55} \pm 0.16 0.52 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.51 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.53 \pm 0.01 0.55 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.53 \pm 0.01 0.55 \pm 0.01 0.52 \pm 0.01 0.52 \pm 0.01 0.53 \pm 0.01 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.$	$\operatorname{HEGNN}_{l < 2}^{-}$	$10.04 \pm$	0.45 61.8	0±5.92 4	4. <u>63</u> ±0.01	12	.85±0.01	0.39 ± 0.01	0.91 ± 0.06	10.56 ± 0.05	0.55 ± 0.01
	$\operatorname{HEGNN}_{l\leq 3}^{-}$	$10.20 \pm$	0.23 62.8	2±4.25 4	4.63±0.01	12	$.85 \pm 0.02$	0.37 ± 0.01	0.94 ± 0.10	$\underline{10.55}{\scriptstyle\pm0.16}$	$0.52{\scriptstyle \pm 0.01}$

 12.85 ± 0.01

 0.37 ± 0.02

 0.88 ± 0.02 10.56 \pm 0.33 0.54 \pm 0.01

Most molecules may **not be symmetrical**, and even affected by molecular vibration, the structural changes are enough to **eliminate the original symmetry**.

So what are the advantages of HEGNN at this time? The answer is better robustness!

Table 5: Take the tetrahedron as an example and compare the cases of EGNN, HEGNN_{l=3}, and HEGNN_{$l\leq3$} when adding noise perturbations. Here, ε represents the ratio of noise, and the modulus of the noise obeys $\mathcal{N}(0, \varepsilon \cdot \mathbb{E}[||\vec{x} - \vec{x}_c||] \cdot I)$. It can be observed that the performance of EGNN is slightly improved in the presence of noise (from 50% when $\varepsilon = 0.01$ to 60% when $\varepsilon = 0.5$), while HEGNN demonstrates better robustness.

	$\varepsilon = 0.01$	$\varepsilon = 0.05$	$\varepsilon = 0.10$	$\varepsilon = 0.50$
EGNN	50.0 ± 0.0	45.0 ± 15.0	65.0 ± 22.9	60.0 ± 20.0
$\text{HEGNN}_{l=3}$	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
$\text{HEGNN}_{l\leq 3}$	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0

Reference

[1] Puny O, Atzmon M, Smith E J, et al. Frame Averaging for Invariant and Equivariant Network Design. ICLR'22.

[2] Han J, Huang W, Xu T, et al. Equivariant graph hierarchy-based neural networks[C]. NeurIPS'22.

[3] Zhang Y, Cen J, Han J, et al. Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning. ICML'24.

[4] Wang Y, Cheng C, Li S, et al. Neural P3M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs. NeurIPS'24.

[5] Joshi C K, Bodnar C, Mathis S V, et al. On the expressive power of geometric graph neural networks. ICML'23.

[6] Satorras V G, Hoogeboom E, Welling M. E (n) equivariant graph neural networks. ICML'21.

[7] Frank J T, Unke O T, Müller K R, et al. A Euclidean transformer for fast and stable machine learned force fields. Nature Communications'24.

