FedAvP: Augment Local Data via Shared Policy in Federated Learning

Minui Hong

Seoul National University

Junhyeog Yun Seoul National University

Insu Jeon

Seoul National University

Gunhee Kim Seoul National University

Motivation

- Federated Data Augmentation Aim to increase the diversity and volume of data available at each client, thereby improving overall performance of the federated models.
- Sharing input-level or feature-level information can raise privacy concerns.

Background : Reconstruction Attack

Assume we have a given gradient \(\nabla W(x, y)\), then we can optimize
 for a dummy data and label pair (x', y') by minimizing the following
 objective[1]:

[Fig] Federated learning training process, https://ai.sony/blog/blog-032/ [1] Zhu, L., et al. "Deep leakage from gradients", NeurIPS 2019

Motivation

Yoon et al., ICLR'21
$$x^*, y^* = \underset{x',y'}{\operatorname{argmin}} \begin{bmatrix} (1-\alpha) \cdot \left(1 - \ell \left(\nabla W(x,y), \nabla W(x,'y')\right)\right) \\ +\alpha \cdot ||x' - x_{mean}|| \end{bmatrix}$$
Mean Image

Zhu, Z., et al., PMLR'21
$$x^*, y^* = \underset{x',y'}{\operatorname{argmin}} \frac{\left[(1 - \alpha - \beta) \cdot \left(1 - \ell(\nabla W(x, y), \nabla W(x, 'y'))\right)\right]}{\left[(1 - \alpha - \beta) \cdot \left(1 - \ell(\nabla W(x, y), \nabla W(x, 'y'))\right)\right]}$$
Label & Generator

Zhou & Konukoglu, ICLR'23
$$x^{*}, y^{*} = \underset{x',y'}{\operatorname{argmin}} \frac{\left[(1 - \alpha - \beta) \cdot \left(1 - \ell\left(\nabla W(x,y), \nabla W(x,'y')\right)\right) + \alpha \cdot \mathbb{E}_{k} \left|\left|\bar{\mu}^{k} - \mu^{k'}\right|\right| + \beta \cdot \mathbb{E}_{k} \left|\left|\bar{\sigma}^{k} - \sigma^{k'}\right|\right|\right]}{\mathbf{Feature Statistics}}$$

[1] Yoon, Tehrim, et al. "FedMix: Approximation of Mixup under Mean Augmented Federated Learning.", ICLR 2021
[2] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. "Data-free knowledge distillation for heterogeneous federated learning.", PMLR 2021
[3] Zhou & Konukoglu. "FedFA: Federated Feature Augmentation.", ICLR 2024

Our Idea

- Instead of directly sharing raw data between clients, we share Data **Augmentation Policies**.
- Augmentation Policies include the types and intensities of image transformations such as translation, shear, and flipping.

- One round of local training and aggregation is considered an **inner step**.
- Validation on clients after each global model update servers as the outer step.

Aggregation occurs between Train/Val

(a) Our Federated Meta Policy Loss(FMPL)

Meta Policy Loss can be computed locally

(b) First-order Approximation of FMPL

- Accessing other clients' gradients raises **privacy and communication** concerns.
- To address this, we apply a firstorder approximation.

• We apply a first-order approximation via Taylor expansion, reducing both privacy risks and communication overhead.

Consider the federated meta-policy loss derived from the updated weight w_n^k for client k at step n using a first-order Taylor expansion:

$$\ell_{D_k^{val}}(w_{g_{r+1}}) \approx \ell_{D_k^{val}}(w_n^k) + \nabla \ell_{D_k^{val}}(w_n^k)^T (w_{g_r} - w_n^k).$$

When computing the policy gradient of the loss with respect to θ_{n-1}^k , the first-order gradient approximation is

$$-\alpha_k \cdot lr \frac{\partial (\nabla \ell_{D_k^{val}}(w_n^k)^T \nabla \ell_{t_{\mathcal{P}_{\theta_{n-1}^k}}(D_{k,n-1}^{train})}(w_{n-1}^k))}{\partial \theta_{n-1}^k},$$

where $w_n^k = w_{g_r} - lr \cdot g_{w_0^k}^{aug} - \cdots - lr \cdot g_{w_{n-1}^k}^{aug}$ and α_k is a coefficient proportional to the client's data size.

• We update our policy as done in Reptile[1]. Our algorithm allows for rapid adaptation of a personalized policy by each client.

We train the policy neural network by increasing the dot-product between policy gradients on each client as follows:

$$\theta_{g_{r+1}} \approx \theta_{g_r} - \eta \lambda \frac{\partial}{\partial \theta_0^k} \mathbb{E} \left[\sum_{j=1}^n L_{k,j} - \frac{\lambda}{2} \sum_{j=0}^n \sum_{s=0}^{j-1} \langle \nabla L_{k,j} \cdot \nabla L_{k,s} \rangle \right],$$

where $L_{k,j} = \ell_{D_{k,j}^{val}}^{FMLPL}(\theta_0^k)$ is the federated meta-policy loss computed on the client k's j-th validation data batch using the global policy parameters θ_0^k .

[1] Nichol, Alex, Joshua Achiam, and John Schulman. "On first-order meta-learning algorithms." arXiv 2018.

Experiments

• Non-IID Classification Results.

	Dataset	CIFAI	R-100	CIFAR-10	SVHN	FEMNIST
	Method	lpha = 5.0 Test (%)	lpha=0.1 Test (%)	lpha=5.0 Test (%)	lpha=0.1 Test (%)	Test (%)
FedAvg	+ Default	40.05	37.34	79.76	85.58	80.65
	+ RandAugment + TrivialAugment	$\begin{array}{c} 47.29\\ 46.61 \end{array}$	$\begin{array}{c} 43.60\\ 42.16\end{array}$	$\begin{array}{c} 82.82\\ 82.00\end{array}$	$\begin{array}{c} 84.84\\ 83.36\end{array}$	$\begin{array}{c} 79.40 \\ 79.01 \end{array}$
FedProx	+ Default	40.57	37.71	80.64	86.79	81.45
	+ RandAugment + TrivialAugment	$\begin{array}{c} 45.97\\ 46.61\end{array}$	$\begin{array}{c} 41.39\\ 41.81 \end{array}$	$82.56 \\ 81.83$	$\begin{array}{c} 85.52\\ 84.11\end{array}$	$\begin{array}{c} 77.11 \\ 79.67 \end{array}$
FedDyn	+ Default + RandAugment	$42.09 \\ 45.70$	$38.52 \\ 42.24$		87.60 81.47	$80.47 \\ 77.64$
	+ TrivialAugment	46.83	42.24 41.10	82.03	83.41	79.31
FedExP	+ Default	42.76	38.28	80.64	86.66	81.45
	+ RandAugment + TrivialAugment	$\begin{array}{c} 46.13\\ 48.55\end{array}$	$\begin{array}{c} 42.23\\ 42.09\end{array}$	$82.86 \\ 82.51$	$84.63 \\ 83.72$	$79.69 \\ 80.20$
FedGen	+ Default	42.14	38.27	80.23	86.79	81.86
	+ RandAugment + TrivialAugment	$47.11 \\ 47.71$	$\begin{array}{c} 43.10\\ 40.76\end{array}$	$81.90 \\ 82.58$	$84.39 \\ 83.23$	$79.34 \\ 77.35$
FedMix	+ Default	40.26	38.69	80.99	86.02	81.63
	+ RandAugment + TrivialAugment	$\begin{array}{c} 46.69\\ 46.64\end{array}$	$\begin{array}{c} 43.00\\ 42.63\end{array}$	$\begin{array}{c} 83.08\\ 81.83\end{array}$	$\begin{array}{c} 83.44\\ 82.34\end{array}$	$\begin{array}{c} 79.46 \\ 77.84 \end{array}$
FedFA	+ Default	43.70	41.21	82.61	87.33	81.13
	+ RandAugment+ TrivialAugment	$\begin{array}{c} 48.86\\ 47.86\end{array}$	$\begin{array}{c} 43.44\\ 43.45\end{array}$	$\begin{array}{c} 82.44\\ 80.12\end{array}$	$\begin{array}{c} 81.32\\ 78.62 \end{array}$	$78.71 \\ 78.96$
FedAvP	(W/ Local Policy)	49.04	43.86	83.64	87.05	83.94
FedAvP FedAvP	(Fast Update)	$\begin{array}{c} 49.97 \\ 50.47 \\ (\pm 0.03) \end{array}$	· /	· · · · · ·	· · · ·	84.47 (±0.006) 84.27 (±0.07)

• Results with a larger model.

	R = 100		R = 300		R = 500	
Method	Test (%)	OOD (%)	Test (%)	OOD (%)	Test (%)	OOD (%)
FedAvg+Default	76.01	74.18	83.92	82.59	90.38	91.64
FedAvg+RandAugment	59.30	53.52	81.04	77.74	89.75	89.96
FedAvg+TrivialAugment	44.74	40.79	78.83	75.59	89.51	89.80
FedExP+Default	84.89	84.97	87.17	87.44	90.03	90.72
FedExP+RandAugment	74.44	71.87	87.56	85.31	88.20	88.92
FedExP+TrivialAugment	43.56	40.47	83.26	81.51	88.07	88.68
FedFA+Default	83.19	83.10	88.99	89.45	91.18	92.03
FedFA+RandAugment	62.62	63.74	86.77	86.23	90.92	91.97
FedFA+TrivialAugment	8.477	10.63	68.42	70.29	86.87	88.09
FedAvP (Fast Update)	86.14	87.24	91.56	92.13	93.85	93.34

• Visualization of global policies.

Experiments

• Reconstruction attack results.

Metric	PS	Accuracy	
Method	Client(S)	Client(L)	Test(%)
FedAvg	10.88	11.36	37.34
FedGen	8.86	9.27	38.27
FedMix	10.27	10.48	38.69
FedFA	10.86	11.82	41.21
FedAvP	8.72	9.25	45.96
edGen + label + generator	9.21	9.81	38.27
FedMix + input	11.89	12.40	38.69
FedFA + feature	12.11	12.87	41.21
FedAvP + policy gradients	8.77	9.20	45.96
ATSPrivacy (7-4-15)	8.45	8.89	38.61
ATSPrivacy (21-13-3,7-4-15)	6.70	6.69	36.42

• Computation and comm. cost.

	CIFAR-10	0 dataset
Method	Rounds(35%)) Time(35%
FedAvg + Default	300	1.05 hour
FedAvg + RandAugmer	nt 300	1.62 hour
FedAvg + TrivialAugme	ent 450	2.17 hour
FedAvP (Fast Update)	200	1.18 hour
FedAvP	200	4.01 hour
Method	CIFAR-100 Before(MB) Per	
FedAvg	0.00	15.35
FedMix	1.27	15.35
reuwiix		15 00
FedFA	0.00	15.38
	0.00	15.38

Thank you

Code: https://github.com/alsdml/FedAvP