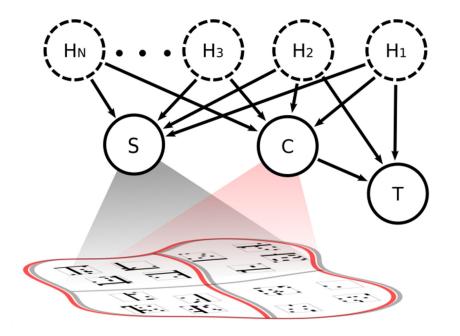
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data

Ryan Welch*, Jiaqi Zhang*, Caroline Uhler

AT BROAD INSTITUTE

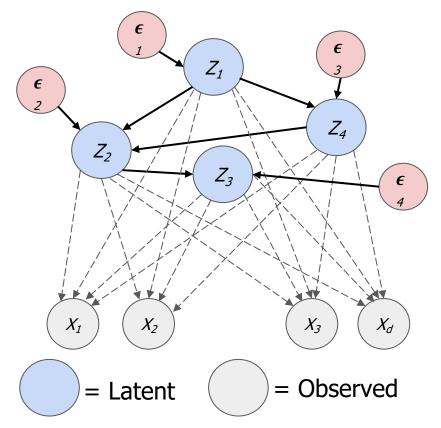
Motivation

<u>Causal disentanglement</u> aims to uncover the underlying causal mechanisms present in complex, unobserved systems.



Particularly useful in learning complicated gene regularly networks

Nonlinear Additive Gaussian Equation Models



$$Z_i = f_i(Z_{pa(i)}) + \mathcal{E}_i, \qquad \forall i \in [n]$$

•
$$\mathcal{E}_i \sim \mathcal{N}(0, \sigma_i^2)$$
 , f_i is nonlinear

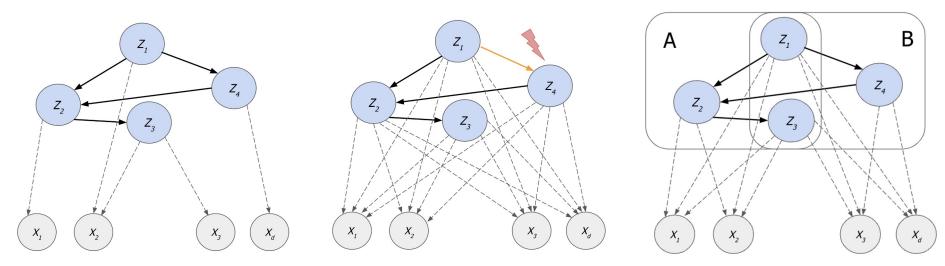
• Observed
$$X = g(Z)$$

•
$$g = H \in \mathbb{R}^{n \times d}$$
 is linear

Latent factors are identifiable with...

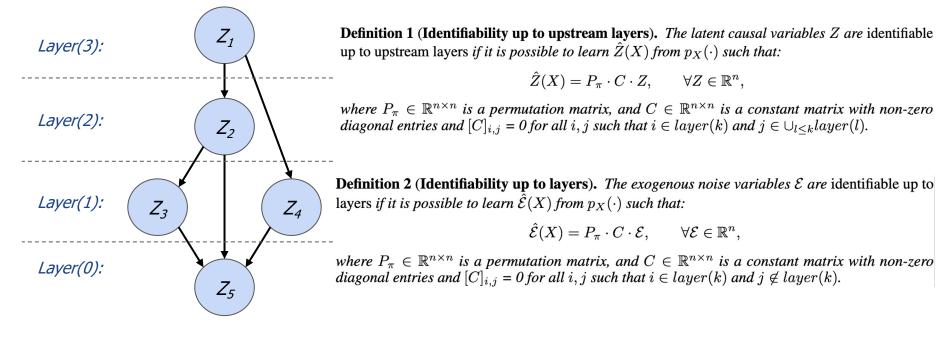
<u>Graphical constraints</u> on the mixing process Access to atomic interventions

Data from m<u>ultiple</u> <u>modalities</u>



What is identifiable without any of the above assumptions?

Layer-wise Identifiability



Layers of a causal DAG. A latent variable is contained in layer(k) if its longest path to a lead node is is length k.

Preview of Main Results

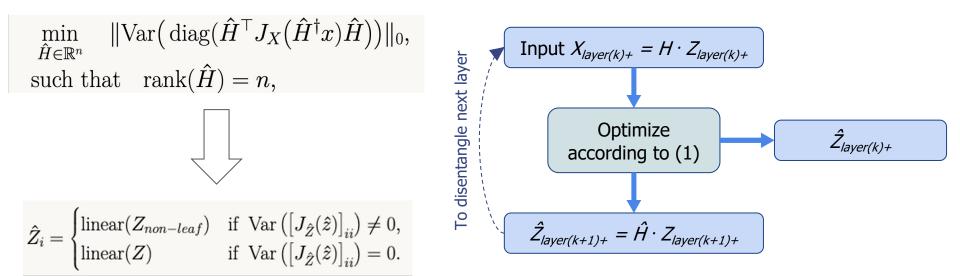
Theorem 1. Under Assumptions 1 and 2, the latent variables Z are identifiable up to their upstream layers from purely observational data.

Theorem 2. Under Assumptions 1 and 2, the exogenous noise variables \mathcal{E} are identifiable up to their layers from purely observational data.

Proposition 1. Under Assumptions 1 and 2, the exogenous noise variables \mathcal{E} are generally unidentifiable beyond layer-wise transformation from observational data.

Assumption 1: Linear mixing Assumption 2: Nonlinear additive Gaussian noise model

Learning Latent Variable Representations



Quadratic Programming on Estimated Scores

Can solve as a <u>rank-constrained</u> optimization problem:

 $\hat{H} = \arg \min_{\hat{H} \in \mathbb{R}^n} \quad \left\| Var \left(diag(J_{\hat{Z}}(\hat{H}^{\dagger}x)) \right) \right\|_0,$ such that $\operatorname{rank}(\hat{H}) = n$

Can solve iteratively by column as a <u>QCQP</u>:

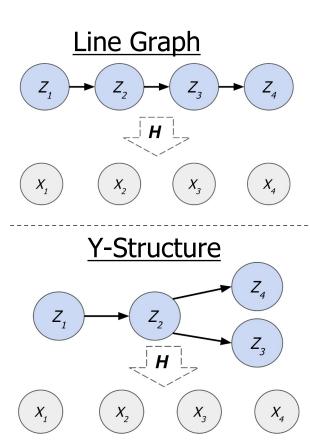
$$\begin{split} [\hat{H}]_i &= \arg\min_{h\in\mathbb{R}^n} \quad 0\\ &\text{such that} \quad h^{\top}\tilde{J}_X(x^{(m)})h = 0, \quad \forall m \in [N],\\ &h^{\top}h = 1,\\ &h^{\top}[\hat{H}]_j = 0, \quad \forall j \in [i-1], \end{split}$$
where $\tilde{J}_X(x^{(m)}) \triangleq \hat{J}_X(x^{(m)}) - \left(\frac{1}{N}\sum_{m=1}^N \hat{J}_X(x^{(m)})\right)$

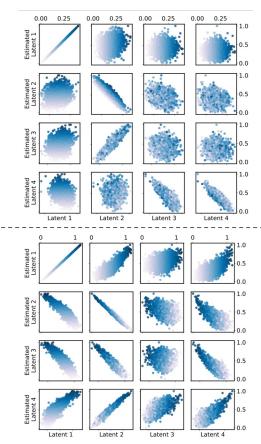
Discontinuous and Non-convex

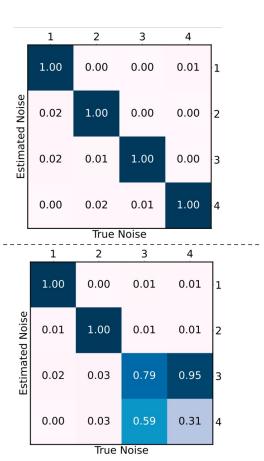
d x n dimensions

Continuous

Results on Synthetic Data







Summary

• Prove that latent causal variables can be disentangled up to their upstream layer representations

• Present practical algorithm to perform such disentanglement

• Validate our theory and algorithm with experiments on synthetic data

