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Motivation

Causal disentanglement aims to uncover the underlying causal mechanisms 
present in complex, unobserved systems.

Particularly useful in learning 
complicated gene regularly 
networks



Nonlinear Additive Gaussian Equation Models
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Latent factors are identifiable with…  

Graphical constraints on 
the mixing process

Access to atomic 
interventions

Data from multiple 
modalities

What is identifiable without any of the above assumptions?



Layer-wise Identifiability
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Preview of Main Results

Assumption 1: Linear mixing
Assumption 2: Nonlinear additive Gaussian noise model



Learning Latent Variable Representations

Input Xlayer(k)+ = H ᐧ Zlayer(k)+

Optimize 
according to (1)

Ẑlayer(k+1)+ = Ĥ ᐧ Zlayer(k+1)+

Ẑlayer(k)+ 
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Quadratic Programming on Estimated Scores

d x n dimensions

Can solve iteratively by column as a QCQP:Can solve as a rank-constrained
optimization problem:

Discontinuous and Non-convex Continuous

n dimensions



Results on Synthetic Data
Line Graph

Y-Structure



Summary 

● Prove that latent causal variables can be 
disentangled up to their upstream layer 
representations

● Present practical algorithm to perform such 
disentanglement

● Validate our theory and algorithm with 
experiments on synthetic data


