Junghyun Lee (KAIST AI), Se-Young Yun (KAIST AI), Kwang-Sung Jun (Univ. of Arizona CS)

Optimization and

A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits

- Consider the **Generalized Linear Model (GLM)**: $dp(r|x; \theta_\star) = \exp ($
- $\theta_\star \in \Theta$.

 $r\langle x,\theta_\star\rangle - m(\langle x,\theta_\star\rangle)$ *g*(*τ*) $+ h(r,\tau)$ $\Big\} d\nu,$

with dispersion parameter $\tau > 0$, base measure ν , **context** $x \in X$, and **unknown parameter**

Consider the **Generalized Linear Model (GLM)**: $dp(r|x; \theta_\star) = \exp ($

 $\theta_\star \in \Theta$.

 A ssumptions. $X \subseteq \mathbb{B}^d(1)$, $\emptyset \neq \Theta \subseteq \mathbb{B}^d(S)$, Θ compact & convex, $m(\cdot)$ is convex and three-times differentiable.

Properties. $\mathbb{E}[r | x, \theta_{\star}] = m'(\langle x, \theta_{\star} \rangle) =: \mu(\langle x, \theta_{\star} \rangle), \text{ Var}[r | x, \theta_{\star}] = g(\tau) \mu(\langle x, \theta_{\star} \rangle)$ **Examples.** $\mu(z) = z$: Gaussian, $\mu(z) = (1 + e^{-z})^{-1}$: **Bernoulli**, $\mu(z) = e^z$: Poisson

 $r\langle x,\theta_\star\rangle - m(\langle x,\theta_\star\rangle)$ *g*(*τ*) $+ h(r,\tau)$ $\Big\} d\nu,$

with dispersion parameter $\tau > 0$, base measure ν , **context** $x \in X$, and **unknown parameter**

Consider the **Generalized Linear Model (GLM)**: $dp(r|x; \theta_\star) = \exp ($

 $\theta_\star \in \Theta$.

 A ssumptions. $X \subseteq \mathbb{B}^d(1)$, $\emptyset \neq \Theta \subseteq \mathbb{B}^d(S)$, Θ compact & convex, $m(\cdot)$ is convex and three-times differentiable.

Properties. $\mathbb{E}[r | x, \theta_{\star}] = m'(\langle x, \theta_{\star} \rangle) =: \mu(\langle x, \theta_{\star} \rangle), \text{ Var}[r | x, \theta_{\star}] = g(\tau) \mu(\langle x, \theta_{\star} \rangle)$

 $r\langle x,\theta_\star\rangle - m(\langle x,\theta_\star\rangle)$ *g*(*τ*) $+ h(r,\tau)$ $\Big\} d\nu,$

with dispersion parameter $\tau > 0$, base measure ν , **context** $x \in X$, and **unknown parameter**

Examples. $\mu(z) = z$: Gaussian, $\mu(z) = (1 + e^{-z})^{-1}$: **Bernoulli**, $\mu(z) = e^z$: Poisson

Confidence Sequence (CS) for the Unknown Parameter

Confidence Sequence (CS) for the Unknown Parameter

$\mathbf{Goal: For } \delta \in (0,1)$, $\mathbf{obtain } \left\{ \mathscr{C}_t(\delta) \right\}_{t \geq 1}$ s.t. $\mathbb{P} \left(\exists t \geq 1 : \theta_\star \notin \mathscr{C}_t(\delta) \right) \leq \delta$

Goal: For $\delta \in (0,1)$, obtain $\{\mathscr{C}_{t}(\delta)$

 $\Sigma_s := \sigma({x_1, r_1, \dots, x_{s-1}, r_{s-1}, x_s}).$

Confidence Sequence (CS) for the Unknown Parameter

$$
(\delta)\big\}_{t\geq 1} \text{ s.t. } \mathbb{P}\left(\exists t \geq 1 : \theta_{\star} \notin \mathcal{C}_t(\delta)\right) \leq \delta
$$

Setting. $\{(x_s, r_s)\}_{s\geq 1}$: adaptively collected observations satisfying $\mathbb{E}[r_s|\Sigma_s] = \mu(\langle x_s, \theta_\star \rangle)$, where

Goal: For $\delta \in (0,1)$, obtain $\{\mathscr{C}_{t}(\delta)$

Setting. $\{(x_s, r_s)\}_{s\geq 1}$: adaptively collected observations satisfying $\mathbb{E}[r_s|\Sigma_s] = \mu(\langle x_s, \theta_\star \rangle)$, where $\Sigma_s := \sigma({x_1, r_1, \dots, x_{s-1}, r_{s-1}, x_s}).$

We consider CS of the form $\mathscr{C}_t(\delta) := \left\{ \theta \in \Theta : \mathscr{L}_t(\theta) - \mathscr{L}_t(\theta_t) \leq \beta_t(\delta)^2 \right\}$, where $\mathscr{L}_t(\theta) :=$ *t*−1 ∑ $\begin{cases} \mathcal{E}_s(\theta) \triangleq \frac{-r_s \langle x_s, \theta \rangle + m(\langle x_s, \theta \rangle)}{g(\tau)} \end{cases}$

where $\mathscr{L}_t(\theta)$ is the cumulative log-likelihood loss til time $t-1$, with **Lipschitz constant** L_t .

Confidence Sequence (CS) for the Unknown Parameter

$$
(\delta)\big\}_{t\geq 1} \text{ s.t. } \mathbb{P}\left(\exists t \geq 1 : \theta_{\star} \notin \mathcal{C}_t(\delta)\right) \leq \delta
$$

s=1

$$
\frac{\partial}{\partial \theta} \left\{ \mathcal{L}_t(\theta) - \mathcal{L}_t(\hat{\theta}_t) \le \beta_t(\delta)^2 \right\}, \text{ where}
$$
\n
$$
\frac{\partial + m(\langle x_s, \theta \rangle)}{\partial \theta_t} = \arg\min_{\theta \in \Theta} \mathcal{L}_t(\theta).
$$

Theorem 3.1. We have $\mathbb{P}(\exists t \geq 1 : \theta_{\star} \notin \mathscr{C}_t(\delta)) \leq \delta$, where **Bernoulli:** $\beta_t(\delta)^2 \lesssim_{\delta} d \log \frac{d}{d}$ => $\text{poly}(S)$ -free for **Bernoulli**!!! $\langle \Rightarrow$ prior work [Lee et al., AISTATS'24]: \mathcal{O}_8 $\delta(\delta)$) $\leq \delta$ *t* (*δ*) := {*θ* ∈ Θ : ℒ*^t* $(\theta) - \mathscr{L}_t$ (*θ* ̂ *t* $\beta_t(\delta)^2 := \log$ 1 *δ* ⁺ *^d* log (*^e* [∨] 2*eSLt* $2 \leq_{\delta} d \log$ *St* \overline{d} => poly(*S*) *St*

New, State-of-the-Art CS for GLMs! Contribution #1

Rmk. For self-concordant GLMs, one can have an *ellipsoidal form* of the CS. 4

$$
\mathcal{E}_t(\delta) \le \delta, \text{ where}
$$

$$
\mathcal{E}_t(\theta) - \mathcal{L}_t(\hat{\theta}_t) \le \beta_t(\delta)^2
$$

$$
+ d \log \left(e \vee \frac{2eSL_t}{d} \right)
$$

$$
\delta \left(S + d \log \frac{St}{d} \right)
$$

Proof of Theorem 3.1 **Step 1. Time-Uniform PAC-Bayes Bound**

$$
\mathbb{P}\left(\exists t \geq 1 : \mathscr{L}_t(\theta_\star) - \mathbb{E}_{\theta \sim \mathbb{P}_t} \right)
$$

 $[\mathscr{L}_t(\theta)] \ge \log$ 1 *δ* $+ D_{KL}(\mathbb{P}_t || \mathbb{Q}) \le \delta$

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Lemma 3.3. For any data-independent "prior" Q and any sequence of adapted "posterior" distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds:

Lemma 3.3. For any data-independent "prior" Q and any sequence of adapted "posterior" distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds: 1

pf. Consider the likelihood ratio $M_t(\theta) = \exp(\mathscr{L}_t(\theta_\star) - \mathscr{L}_t(\theta))$.

 $\mathbb{P}\left(\exists t \geq 1 : \mathscr{L}_t(\theta_\star) - \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta)] \geq \log \theta$ *δ* $+ D_{KL}(\mathbb{P}_t || \mathbb{Q}) \le \delta$

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

-
- 1 *δ* $+ D_{KL}(\mathbb{P}_t || \mathbb{Q}) \le \delta$
-
-

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Lemma 3.3. For any data-independent "prior" Q and any sequence of adapted "posterior" distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds: $\mathbb{P}\left(\exists t \geq 1 : \mathscr{L}_t(\theta_\star) - \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta)] \geq \log \theta$

pf. Consider the likelihood ratio $M_t(\theta) = \exp(\mathscr{L}_t(\theta_\star) - \mathscr{L}_t(\theta))$.

1. $M_t(\theta)$ is a nonnegative martingale, and so is $\mathbb{E}_{\theta \sim \mathbb{Q}}[M_t(\theta)]$ by Tonelli's theorem

$$
\mathcal{L}_t(\theta) \le \log \frac{1}{\delta} + D_{KL}(\mathbb{P}_t || \mathbb{Q}) \le \delta
$$

$$
\text{quality (Ville, 1939), we have } \mathbb{P}\left(\exists t \geq 1 : \mathbb{E}_{\theta \sim \mathbb{Q}}[M_t(\theta)] \geq \frac{1}{\delta}\right) \leq \delta
$$

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Lemma 3.3. For any data-independent "prior" Q and any sequence of adapted "posterior" distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds: $\mathbb{P} \left(\exists t \geq 1 : \mathscr{L}_t(\theta_\star) - \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t] \right)$ (θ)] \geq log 1 $+ D_{KL}(\mathbb{P}_t)$ $\|\mathbb{Q})$

pf. Consider the likelihood ratio $M_t(\theta) = \exp(\mathscr{L}_t(\theta_\star) - \mathscr{L}_t(\theta))$.

1. $M_t(\theta)$ is a nonnegative martingale, and so is $\mathbb{E}_{\theta \sim \mathbb{Q}}[M_t(\theta)]$ by Tonelli's theorem **2.** By Ville's inequality 1939.

Anytime-valid *Markov's inequality* **for supermartingales**

$$
\mathcal{L}_t(\theta) \le \log \frac{1}{\delta} + D_{KL}(\mathbb{P}_t || \mathbb{Q}) \le \delta
$$

- **1.** $M_t(\theta)$ is a nonnegative martingale, and so is $\mathbb{E}_{\theta \sim \mathbb{Q}}[M_t(\theta)]$ by Tonelli's theorem
- **2.** By Ville's inequality [Ville, 1939], we have $\mathbb{P}\left(\exists t\right)$
- - *g*:Θ→ℝ

$$
t \geq 1 : \mathbb{E}_{\theta \sim \mathbb{Q}}[M_t(\theta)] \geq \frac{1}{\delta} \bigg) \leq \delta
$$

3. "Change" Q to \mathbb{P}_t via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].

 $KL(\mathbb{P}_t | |\mathbb{Q}) = \sup_{\theta \sim \mathbb{P}_t} [g(\theta)] - \log \mathbb{E}_{\theta \sim \mathbb{Q}}[e^{g(\theta)}]$

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Lemma 3.3. For any data-independent "prior" Q and any sequence of adapted "posterior" distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds: $\mathbb{P} \left(\exists t \geq 1 : \mathscr{L}_t(\theta_\star) - \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t] \right)$ (θ)] \geq log 1 $+ D_{KL}(\mathbb{P}_t)$ $\|\mathbb{Q})$

pf. Consider the likelihood ratio $M_t(\theta) = \exp(\mathscr{L}_t(\theta_\star) - \mathscr{L}_t(\theta))$.

Anytime-valid *Markov's inequality* **for supermartingales**

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Journal of Machine Learning Research 24 (2023) 1-61

$\boldsymbol{\mu}$ omnica receibe ior **r** (Prime-Omnorm) FAO-Dayes Doune

$2.$ By Villege **Primary 2.** By Primary **Primary 2.** Primary 2. 1939.

md Machine Lear $\frac{1}{\omega}$ *Carnegie Mellon University*

Submitted $3/23$; Revised $10/23$; Published $12/23$

BENCHUGG@CMU.EDU **3.** The Presentation of Paris Representation of Change Construction of Russian representation of Russian construction of Russian representation of Russian representation of Russian representation of Russian representation

Proof of Theorem 3.1 Step 1. Time-Uniform PAC-Bayes Bound

Journal of Machine Learning Research 24 (2023) 1-61

$\boldsymbol{\mu}$ omnica receibe ior **r** (Prime-Omnorm) FAO-Dayes Doune

$2.$ By Villege **Primary 2.** By Primary **Primary 2.** Primary 2. 1939.

md Machine Lear $\frac{1}{\omega}$ *Carnegie Mellon University*

Submitted $3/23$; Revised $10/23$; Published $12/23$

SURVEY

BENCHUGG@CMU.EDU **3.** The Presentation of Paris Representation of Change Construction of Russian representation of Russian construction of Russian representation of Russian representation of Russian representation of Russian representation

Proof of Theorem 3.1 Step 2. Novel choice of of "prior" and "posterior" & Lipschitzness

From P. Alquier's MLSS lecture slides

 $\widetilde{\Theta}$ ̂ $\Theta_t \triangleq (1-c)\theta_t + c\Theta$ $\left(-\right)$ 6

Proof of Theorem 3.1

Remark. Originally considered in portfolio optimization [Blum and Kalai, 1999] and fast rates in online learning [Hazan et al., 2007; Foster et al., COLT'18].

Step 2. Novel choice of of "prior" and "posterior" & Lipschitzness

$Q = \text{Unif}(\Theta)$, $P_t = \text{Unif}$

From P. Alquier's MLSS lecture slides

 $\widetilde{\Theta}$ $\Theta_t \triangleq (1-c)\theta_t + c\Theta$ ̂

Proof of Theorem 3.1

Remark. Originally considered in portfolio optimization [Blum and Kalai, 1999] and fast rates in online learning [Hazan et al., 2007; Foster et al., COLT'18].

Step 2. Novel choice of of "prior" and "posterior" & Lipschitzness

$Q = \text{Unif}(\Theta)$, $P_t = \text{Unif}$

$$
Unif\left(\widetilde{\Theta}_t \triangleq (1-c)\widehat{\theta}_t + c\Theta\right)
$$

$\mathbb{Q} = \text{Unif}(\Theta), \quad \mathbb{P}_t = \mathbb{Q}$ \Rightarrow $D_{KL}(\mathbb{P}_t | | \mathbb{Q}) = \log$ vol(Θ) vol($\widetilde{\Theta}$ Θ) $=$ \log vol(Θ) vol(*c*Θ) $\text{Also, } \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta)] = \mathscr{L}_t(\theta_t) + \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta) - \mathscr{L}_t$ ̂

$$
\frac{\Theta}{\Theta} = d \log \frac{1}{c}
$$

Remark. Originally considered in portfolio optimization [Blum and Kalai, 1999] and fast rates in online learning [Hazan et al., 2007; Foster et al., COLT'18].

$$
]-\mathscr{L}_t(\widehat{\theta}_t)]\leq \mathscr{L}_t(\widehat{\theta}_t)+2SL_t c,
$$

Proof of Theorem 3.1

Step 2. Novel choice of of "prior" and "posterior" & Lipschitzness

$$
Unif\left(\widetilde{\Theta}_t \triangleq (1-c)\widehat{\theta}_t + c\Theta\right)
$$

 $\mathbb{Q} = \text{Unif}(\Theta), \quad \mathbb{P}_t = \mathbb{Q}$ \Rightarrow $D_{KL}(\mathbb{P}_t | | \mathbb{Q}) = \log$ vol(Θ) vol($\widetilde{\Theta}$ Θ) $=$ \log vol(Θ) vol(*c*Θ) $\text{Also, } \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta)] = \mathscr{L}_t(\theta_t) + \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta) - \mathscr{L}_t$ ̂

All in all, with probability at most δ , there exists a $t \geq 1$ such that $\mathscr{L}_t(\theta_\star) - \mathscr{L}_t(\theta_t) \ge \log$ ̂ 1 *δ* + *d* log 1 *c* + *^θ*∼ℙ*^t* $[\mathscr{L}_t$ (θ)] – \mathscr{L}_t (*θ* ̂ *t* Choose $c = \min\{1, d/(2SL_t)\}\$ and we are done.

$$
\frac{\Theta}{\Theta} = d \log \frac{1}{c}
$$

$$
)-\mathcal{L}_t(\hat{\theta}_t)] \leq \mathcal{L}_t(\hat{\theta}_t) + 2SL_t c,
$$

Remark. Originally considered in portfolio optimization [Blum and Kalai, 1999] and fast rates in online learning [Hazan et al., 2007; Foster et al., COLT'18].

$$
\Pr_{\nu_{\mathcal{P}_t}}[\mathcal{L}_t(\theta)] - \mathcal{L}_t(\hat{\theta}_t) \ge \log \frac{1}{\delta} + d \log \frac{1}{c} + 2SL_t c
$$

Proof of Theorem 3.1

Step 2. Novel choice of of "prior" and "posterior" & Lipschitzness

Generalized Linear Bandits Problem Setting

For $t \in [T]$:

- 1. The learner observes a potentially infinite (contextual) arm-set $\mathscr{X}_t \subset X$
- 2. The learner chooses $x_t \in \mathcal{X}_t$ according to some policy
- 3. Receive a reward $r_t \sim GLM(x_t, \theta_\star; \mu(\cdot))$
	- \cdot θ_{\star} is unknown to the learner θ_\star

Goal: Minimize the regret

T ∑ *t*=1

 $\text{Reg}^B(T) := \sum \{ \mu(\langle x_{t, \star}, \theta_{\star} \rangle) - \mu(\langle x_t, \theta_{\star} \rangle) \}$ where $x_{t, \star} := \text{argmax}_{x \in \mathcal{X}} \mu(\langle x, \theta_{\star} \rangle)$. $\{\mu(\langle x_{t,\star}, \theta_{\star} \rangle) - \mu(\langle x_{t}, \theta_{\star} \rangle)\}$ where $x_{t,\star} := \argmax_{x \in \mathcal{X}} \mu(\langle x, \theta_{\star} \rangle)$

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

- 1. Compute θ_t and $\mathcal{C}_t(\delta)$ **tighter confidence sequence** (Theorem 3.1)! ̂
- 2. $(x_t, \theta_t) = \argmax_{x \in \mathcal{X}_t, \theta \in \mathcal{C}_t(\delta)} \mu(\langle x, \theta \rangle)$
- 3. Play x_t and observe/receive a reward $r_t \sim GLM(x_t)$

bandits w.p. at least $1 - \delta$:

Theorem 4.1. OFUGLB attains the following regret bound for self-concordant generalized linear

Generalized Linear Bandits Contribution #2

$$
L M(x_t, \theta_\star; \mu(\ \cdot \))
$$

$$
\text{Reg}(T) \lesssim d \sqrt{\frac{g(\tau)T}{\kappa_{\star}(T)}} \log \frac{SL_T}{d} \log \frac{R_{\mu}ST}{d} + d^2 R_s R_{\mu} \sqrt{g(\tau)} \kappa(T)
$$

permanent term

transient term

Nontrivial proof!!

-
- => improves upon prior state-of-the-art [Lee et al., AISTATS'24]
- explicit warmup + their guarantees only apply to *bounded* GLBs.

• **Poisson Bandits:** $\tilde{\mathcal{O}}\left(dS\sqrt{T/\kappa_{\star}(T)}+d^2e^{2S}\right)$

\n- Linear Bandits:
$$
\tilde{\mathcal{O}}\left(\sigma d \sqrt{T}\right)
$$
\n

• => matches state-of-the-art [Flynn et al., NeurlPS'23]

• Logistic Bandits: $\tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}(T)}+d^2\right)$ *κ*(*T*))

• => *state-of-the-art* regret guarantee

\bullet \Rightarrow *first* poly(*S*)-free regret with **computationally tractable, purely optimistic approach!!**

• \Rightarrow similar guarantee in a *concurrent* work [Sawarni et al., arXiv'24], but is intractable and involves

$$
^{2S}\kappa(T)\bigg)
$$

Generalized Linear Bandits

Brief Proof Sketch of Theorem 4.1

Brief Proof Sketch of Theorem 4.1

Previously: use self-concordance control lemma to obtain $\|\theta_{\star} - \hat{\theta}_{t}\|_{H_{t}(\hat{\theta}_{t})} = \mathcal{O}(S\beta_{T}(\delta))$

Brief Proof Sketch of Theorem 4.1 OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain $||\theta_{\star} - \hat{\theta}_{t}||_{H_{t}(\hat{\theta}_{t})} = \mathcal{O}(S\beta_{T}(\delta))$ ̂

 $||\theta_{\star} - \hat{\theta}_{t}||_{\tilde{G}_{t}(\hat{\theta}_{t},\nu_{t})} = \mathcal{O}(\beta_{T}(\delta))$, where \tilde{G} ̂ ˜ $\tilde{\alpha}_s(\theta,\nu) =$ 1 J_{0} $(1 - v)\mu$ $\dot{\mu}_t(\theta + \nu(\nu - \theta))d\nu$

.

Here: maximally avoid self-concordance control => use "exact" Taylor expansion, , where $G_t(\theta_t, \nu_t) = \lambda I + \frac{\partial f}{\partial x_t} \frac{\partial f}{\partial y_t}$, $\frac{\partial f}{\partial y_t} \frac{\partial f}{\partial y_t} x_t$ and *t* $(\theta_t, \nu_t) = \lambda \mathbf{I} +$ ̂ 1 *g*(*τ*) *t*−1 ∑ *s*=1 $\tilde{\alpha}_s(\hat{\theta}_t, \nu_t) x_s x_s^{\mathsf{T}}$ ̂

Brief Proof Sketch of Theorem 4.1

Brief Proof Sketch of Theorem 4.1 **OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits**

BUT, the remaining term of Cauchy-Schy

potential lemma?

$$
\tilde{G}_t(\hat{\theta}_t, \nu_t) = \lambda \mathbf{I} + \frac{1}{g(\tau)} \sum_{s=1}^{t-1} \tilde{\alpha}_s(\hat{\theta}_t, \nu_t) x_s x_s^{\top}
$$

wartz,
$$
\sum_{t} ||x_t||^2_{\tilde{G}_t(\hat{\theta}_t, \nu_t)^{-1}}, \text{ how to apply elliptica}
$$

II

Lemma B.2 (Elliptical Potential Lemma; EPL⁵)
and
$$
V_t := \lambda I + \sum_{s=1}^{t-1} x_s x_s^{\intercal}
$$
. Then, we have the

$$
\sum_{t=1}^{T} \min \left\{ 1, \|x_t\|_{V_t^{-1}}^2 \right\}
$$

BUT, the remaining term of Cauchy-Schv

potential lemma?

$$
\tilde{G}_t(\hat{\theta}_t, \nu_t) = \lambda \mathbf{I} + \frac{1}{g(\tau)} \sum_{s=1}^{t-1} \tilde{\alpha}_s(\hat{\theta}_t, \nu_t) x_s x_s^\mathsf{T}
$$

). Let $x_1, \dots, x_T \in \mathcal{B}^d(X)$ be a sequence of vectors hat

$$
\left\{\frac{1}{2} \le 2d \log \left(1 + \frac{X^2 T}{d\lambda}\right)\right.\}
$$

wartz,
$$
\sum_{t} ||x_t||_{\tilde{G}_t(\hat{\theta}_t, \nu_t)^{-1}}^2
$$
, how to apply **elliptic**

Lemma B.2 (Elliptical Potential Lemma; EPL⁵). Let
$$
x_1, \dots, x_T \in \mathcal{B}^d(X)
$$
 be a sequence of
and $V_t := \lambda I + \sum_{s=1}^{t-1} x_s x_s^{\intercal}$. Then, we have that

$$
\sum_{t=1}^T \min\left\{1, \|x_t\|_{V_t^{-1}}^2\right\} \leq 2d \log\left(1 + \frac{X^2 T}{d\lambda}\right).
$$

BUT, the remaining term of Cauchy-Schy

$$
\left\{\frac{1}{2} \le 2d \log \left(1 + \frac{X^2 T}{d\lambda}\right)\right\}
$$

wartz,
$$
\sum_{t} ||x_t||_{\tilde{G}_t(\hat{\theta}_t, \nu_t)^{-1}}^2
$$
, how to apply **elliptica**

potential lemma? G ˜ *t* $(\theta_t, \nu_t) = \lambda \mathbf{I} +$ ̂ 1 *g*(*τ*) *t*−1 ∑ *s*=1 $\tilde{\alpha}_{s}(\hat{\theta}_{t}, \nu_{t})x_{s}x_{s}^{\top}$ ̂

Main proof novelty: designate the "wor ∑ *t* ∥*xt* $\frac{2}{6}$ $\frac{2}{\tilde{G}_t(\hat{\theta}_t, \nu_t)^{-1}} \leq \sum$ ̂ *t* $\min \Big\{ 1, \, \mu(\bar{\theta}) \Big\}$ \int_S) $\left| \right| x_t$

). Let $\boldsymbol{x}_1, \cdots, \boldsymbol{x}_T \in \mathcal{B}^d(X)$ be a sequence of vectors hat

rst-case"
$$
\bar{\theta}_t
$$
's such that
\n
$$
\|\frac{2}{\bar{H}_t^{-1}}\}, \text{ where } \overline{H}_t = 2g(\tau)\lambda I + \sum_{s=1}^{t-1} \mu_s(\overline{\theta}_s)x_s x_s^\top
$$

Experiments for Logistic Bandits Better than most of existing approaches

- One may wonder, does shaving off dependencies on S really help in practice?
- Synthetic experiments show that this is indeed beneficial, by a large margin!!

EVILL **OFUGLB** - OFUGLB-e **EMK**

1. A *unified,* state-of-the-art construction of likelihood ratio-based CS for any convex

2. **OFUGLB:** A new computationally tractable, optimistic algorithm that achieves

Thank you for your attention! Poster Session 3 (Dec. 12, 11AM ~ 2PM)

- GLMs, with explicit constants!
- state-of-the-art regrets for self-concordant GLBs.
- 3. For logistic bandits, its efficacy is shown numerically.

arXiv

References

J. Lee, S.-Y. Yun, and K.-S. Jun. Improved Regret Analysis of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion. In *AISTATS* 2024.

A. Sawarni, N. Das, S. Barman, and G. Sinha. Generalized Linear Bandits with Limited Adaptivity. In *NeurIPS* 2024. H. Flynn, D. Reeb, M. Kandemir, and J. R. Peters. Improved Algorithms for Stochastic Linear Bandits Using Tail

Bounds for Martingale Mixtures. In *NeurIPS* 2023.

J. Ville. Étude critique de la notion de collectif. *Monographies des Probabilités*. Paris: Gauthier-Villars, 1939.

M. D. Donsker and S. R. S. Varadhan. Asymptotic Evaluation of Certain Markov Process Expectations for Large Times. IV. *Communications on Pure and Applied Mathematics*, 36(2):183-212, 1983.

A. Blum and A. Kalai. Universal Portfolios With and Without Transaction Costs. *Machine Learning*, 35(3):193-205, 1999. E. Hazan, Z. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning,*

69(2):169-192, 2007.

D. J. Foster, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Logistic Regression: The Importance of Being Improper. In *COLT 2018.*

