

Approximately Pareto-optimal Solutions for Bi-Objective *k*-**Clustering Problems**

Anna Arutyunova, **Jan Eube**, Heiko Röglin, Melanie Schmidt, Sarah Sturm, Julian Wargalla

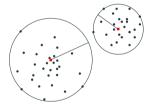
k-clustering: Choose *k* centers $C \subset \mathcal{P}$ and assignment $\sigma \colon \mathcal{P} \to C$ optimizing

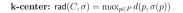
k-center: $rad(C, \sigma) = \max_{p \in P} d(p, \sigma(p))$

k-means: mean $(C, \sigma) = \sum_{p \in P} d(p, \sigma(p))$

k-separation: $\operatorname{sep}(C, \sigma) = \min_{\substack{p,q \in P \\ \sigma(p) \neq \sigma(q)}} d(p,q)$

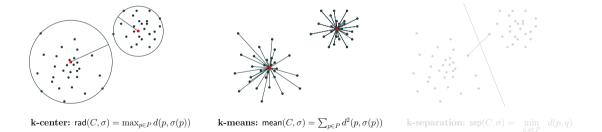
k-clustering: Choose *k* centers $C \subset \mathcal{P}$ and assignment $\sigma \colon \mathcal{P} \to C$ optimizing





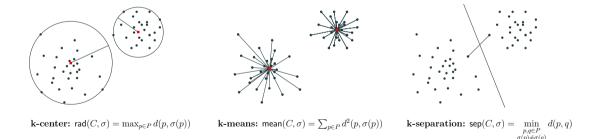
k-separation: $\operatorname{sep}(C, \sigma) = \min_{\substack{p,q \in P \\ \sigma(p) \neq \sigma(q)}} d(p,q)$

k-clustering: Choose *k* centers $C \subset \mathcal{P}$ and assignment $\sigma \colon \mathcal{P} \to C$ optimizing

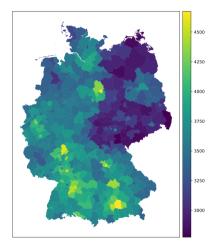


1

k-clustering: Choose *k* centers $C \subset \mathcal{P}$ and assignment $\sigma \colon \mathcal{P} \to C$ optimizing

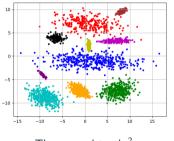


What if we want to consider multiple metrics?



Average income of the German districts in Euro¹

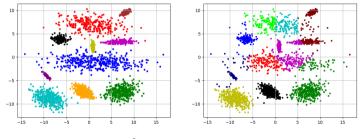
¹Source: Bundesagentur für Arbeit



The ground truth.²

²Data Set generated by Julia Handl and Joshua D. Knowles, 2007

What if we want to consider multiple objective functions?

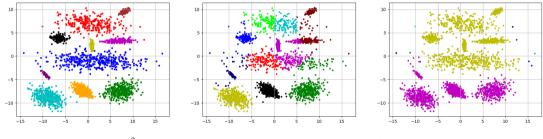


The ground truth.²

Clustering by *k*-means++

²Data Set generated by Julia Handl and Joshua D. Knowles, 2007

What if we want to consider multiple objective functions?

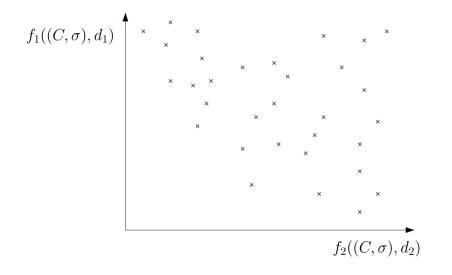


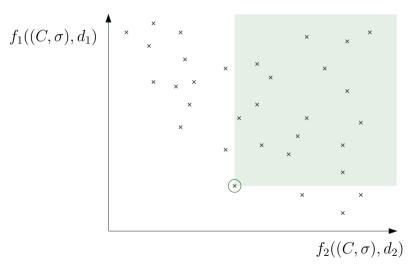
The ground truth.²

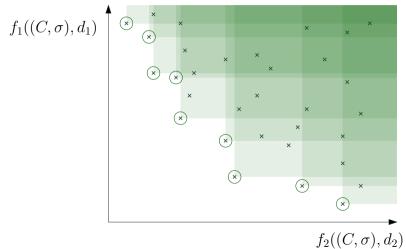
Clustering by *k*-means++

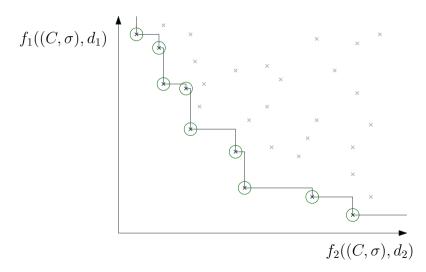
Optimum k-separation clustering

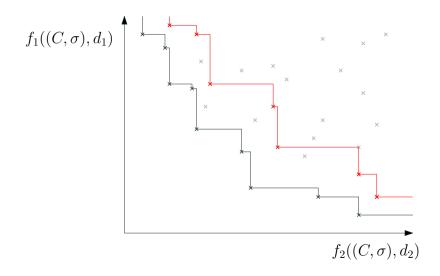
 $^{^{2}\}mathsf{Data}$ Set generated by Julia Handl and Joshua D. Knowles, 2007



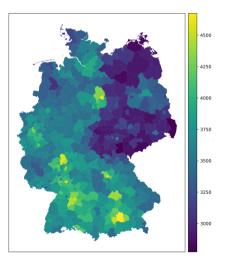






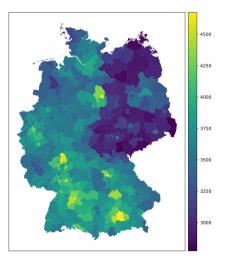


Experimental Evaluation

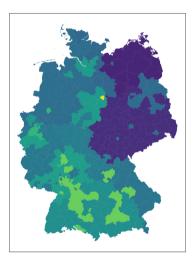


Average income of the German districts in Euro

Experimental Evaluation

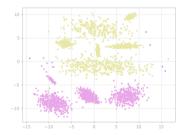


Average income of the German districts in Euro

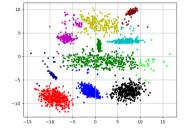


A good Pareto solution

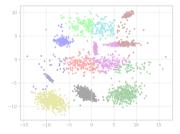
Experimental Evaluation



Optimum *k*-separation clustering



The best Pareto Solution



Clustering by *k*-means++

	k-center	k-diameter	k-separation	<i>k</i> -median	<i>k</i> -means
k-center	(2,2)	(2,2)	(2, 1)	(9, 6 + ϵ) ¹	$(9,54+\epsilon)$
<i>k</i> -diameter	-	(2,2)	(2, 1)	$(18, 6 + \epsilon)$	$(18,54+\epsilon)$
k-separation	-	-	(1, 1)	$(1,2+\delta_1)^2$	$(1, 4 + 4\sqrt{\delta_2} + \delta_2)^2$
<i>k</i> -median	-	-	-	$2.675 + \epsilon^3$	$9+\epsilon^3$
<i>k</i> -means	-	-	_	-	$9+\epsilon^3$

¹Alamdari & Shmoys, 2017 also provided a (4,8) approximation algorithm

 $^{^2\}delta_1$ and δ_2 refer to the currently best single-objective approximation factors respectively.

³Calculates only an approximate convex Pareto Set, the approximation is the same for both objectives

	k-center	<i>k</i> -diameter	k-separation	<i>k</i> -median	<i>k</i> -means
<i>k</i> -center	(2,2)	(2,2)	(2, 1)	$(9, 6+\epsilon)^1$	$(9,54+\epsilon)$
<i>k</i> -diameter	-	(2,2)	(2, 1)	$(18, 6+\epsilon)$	$(18,54+\epsilon)$
k-separation	-	-	(1, 1)	$(1,2+\delta_1)^2$	$(1, 4 + 4\sqrt{\delta_2} + \delta_2)^2$
<i>k</i> -median	-	-	-	$2.675 + \epsilon^3$	$9+\epsilon^3$
<i>k</i> -means	-	-	_	-	$9+\epsilon^3$

¹Alamdari & Shmoys, 2017 also provided a (4,8) approximation algorithm

 $^{^2\}delta_1$ and δ_2 refer to the currently best single-objective approximation factors respectively.

³Calculates only an approximate convex Pareto Set, the approximation is the same for both objectives

Thank you for your attention!