A Single-Step, Sharpness-Aware Minimization is All You Need to Achieve Efficient and Accurate Sparse Training

Jie Ji, Gen Li, Jingjing Fu, Fatemeh Afghah, Linke Guo, Xiaoyong Yuan, Xiaolong Ma

Clemson University

jji@g.Clemson.edu

Introduction

- **Context**: Growing size and complexity of DNNs demand efficient training methods.
- **Challenge**: Sparse training helps but struggles with generalization due to chaotic loss surfaces.
- **Objective**: Introduce S2-SAM to enhance sparse training with no extra computational cost.

Motivation & Problem Statement

• Insight: Sparse networks suffer from steep, chaotic loss surfaces as shown in visualization (Fig. 1).

Motivation & Problem Statement

- Insight: Sparse networks suffer from steep, chaotic loss surfaces as shown in visualization (Fig. 1).
- **Problem**: Current sparse training methods often fail to achieve optimal generalization.
- **Key Question**: Can we improve generalization without sacrificing sparsity or efficiency?

Proposed Method - S2-SAM

- **Concept**: Single-step Sharpness-Aware Minimization.
- Innovation: Leverages prior gradient information to approximate perturbation in a single step.
- **Benefit**: Zero additional computational cost compared to traditional SAM.

Technical Overview

- **SAM Recap**: Two-step approach to find flatter minima.
- **S2-SAM Approach**: Uses prior gradients to compute perturbation (Equation reference from the paper).
- Diagram: Visualize the gradient flow (Fig. 2).

Theoretical Analysis

- **Convergence Proof**: Overview of theoretical backing and conditions.
- **Assumptions**: Unbiased gradient, smooth loss function, and bounded variance.
- **Conclusion**: S2-SAM guarantees convergence with minimal modifications.

Theorem 1. Under Assumption 1, assume that $\ell(\mathbf{y}, f(\mathbf{w}, \mathbf{x}))$ is L-smooth and B-Lipschitz, suppose $\widehat{F}_{\mathcal{S}}(\mathbf{w})$ satisfies Assumption 2 and $\min_{\mathbf{w}\in\mathcal{W}}\widehat{F}_{\mathcal{S}}(\mathbf{w}) \leq F_{\mathcal{S}}(\mathbf{w}_{\mathcal{S}}^*) + \frac{\lambda}{2} \|\mathbf{w}_t\|^2$ with $\lambda = 2L$, where \mathbf{w}_t is the intermediate solution of \mathcal{A} , then

$$\mathbf{E}_{R,\mathcal{A},\mathcal{S}}\left[F\left(\mathbf{w}_{R}\right)\right] - \mathbf{E}_{\mathcal{S}}\left[F\left(\mathbf{w}_{*}\right)\right] \leq \frac{\widehat{F}_{\mathcal{S}}\left(\mathbf{w}_{0}\right)}{\mu\eta T} + \frac{\eta(L+\lambda)\sigma^{2}}{2\mu} + \frac{6B+1}{n}$$

where A is SGD.

The $\mathbf{w}_{\mathcal{S}}^* \in \min_{\mathbf{w} \in \mathcal{W}} F_{\mathcal{S}}(\mathbf{w})$ is an optimal solution, and we show that the generalization error is bounded. Based on Lemma 1, the proof of Theorem 1 is derived in Appendix C.

Experimental Results Overview

- Datasets & Models: CIFAR-10, CIFAR-100 with ResNet-32 and VGG-19; ImageNet-1K with ResNet-50.
- Key Metrics: Accuracy improvement and training throughput.
- **Summary**: Consistent improvement across various sparsity levels and methods.

Detailed Experimental Results

- **Table 1**: Show test accuracy improvements with S2-SAM on CIFAR-10/100.
- **Visualization**: Loss surface comparison (Fig. 3) illustrating smoother loss with S2-SAM.
- Key Takeaway: Higher sparsity benefits more from S2-SAM.

Detailed Experimental Results

Table 1: Test accuracy (%) of pruned ResNet-32 on CIFAR-10/100.

Datasets		CIFAR-10			CIFAR-100	
Pruning ratio	90%	95%	98%	90%	95%	98%
ResNet-32	94.58 (Dense)			74.89 (Dense)		
LT [20]	92.31	91.06	88.78	68.99	65.02	57.37
LT+ S ² -SAM (ours)	92.58±0.07 (0.27↑)	91.47±0.10 (0.41↑)	89.35±0.11 (0.57↑)	69.34±0.09 (0.35↑)	65.45±0.11 (0.43↑)	57.76±0.13 (0.39↑)
SNIP [21]	92.59±0.10	91.01±0.21	87.51±0.31	68.89±0.45	65.02±0.69	57.37±1.43
SNIP+ S ² -SAM (ours)	93.17±0.16 (0.58↑)	91.59±0.22 (0.58↑)	88.08±0.29 (0.57↑)	69.33±0.28 (0.44↑)	65.66±0.49 (0.64↑)	58.25±0.77 (0.88↑)
GraSP [32]	92.38±0.21	91.39±0.25	88.81±0.14	69.24±0.24	66.50±0.11	58.43±0.43
GraSP+ S ² -SAM (ours)	92.87±0.14 (0.49↑)	91.98±0.22 (0.59↑)	89.66±0.29 (0.85↑)	69.98±0.22 (0.74↑)	67.12±0.18 (0.62↑)	59.45±0.19 (1.02↑)
SET [2]	92.30	90.76	88.29	69.66	67.41	62.25
SET+ S ² -SAM (ours)	92.92±0.23 (0.62↑)	91.50±0.19 (0.74↑)	88.78±0.20 (0.49↑)	70.23±0.20 (0.57↑)	68.28±0.15 (0.87↑)	63.56±0.19 (1.31↑)
DSR [33]	92.97	91.61	88.46	69.63	68.20	61.24
DSR+ S ² -SAM (ours)	93.49±0.21 (0.52↑)	92.08±0.22 (0.47↑)	89.11±0.17 (0.65↑)	70.11±0.16 (0.48↑)	68.87±0.16 (0.67↑)	62.00±0.17 (0.76↑)
RigL [23]	93.07	91.83	89.00	70.34	68.22	64.07
RigL+ S ² -SAM (ours)	93.55±0.14 (0.48↑)	92.11±0.21 (0.28↑)	90.40±0.17 (1.40↑)	72.38±0.11 (2.04↑)	70.29±0.14 (2.07↑)	64.98±0.06 (0.91↑)
RigL (ERK) [23]	93.55	92.39	90.22	70.62	68.47	64.14
RigL (ERK)+ S ² -SAM (ours)	93.75±0.19 (0.20↑)	92.81±0.08 (0.42↑)	91.16±0.11 (0.94↑)	72.56±0.07 (1.94↑)	70.33±0.10 (1.86↑)	65.15±0.12 (1.01↑)
$\begin{tabular}{l} \hline MEST (EM) [3] \\ MEST (EM) + S^2 - SAM (ours) \\ MEST (EM\&S) [3] \\ MEST (EM\&S) + S^2 - SAM (ours) \end{tabular}$	92.56±0.07	91.15±0.29	89.22±0.11	70.44±0.26	68.43±0.32	64.59±0.27
	93.43±0.12 (0.87↑)	91.58±0.07 (0.43↑)	91.22±0.14 (2.00↑)	71.95±0.13 (1.51x↑)	70.04±0.10 (1.61↑)	65.69±0.34 (1.10↑)
	93.27±0.14	92.44±0.13	90.51±0.11	71.30±0.31	70.36±0.05	67.16±0.25
	93.39±0.17 (0.12↑)	92.97±0.17 (0.53↑)	91.32±0.18 (0.81↑)	72.74±0.08 (1.44↑)	71.85±0.09 (1.49↑)	69.13±0.20 (1.97↑)

Detailed Experimental Results

Training Efficiency

- **Comparison**: S2-SAM vs. SAM in terms of training speed (Table 4).
- **Observation**: S2-SAM maintains throughput close to original training methods.

Table 4: Training speed of SAM [25] and S²-SAM for different sparse training at 90% sparsity.

Methods	Training	Accuracy (%)	Throughput (†)
GraSP	Original SAM	68.10 68.95	2148 imgs/s 1021 imgs/s
	S ² -SAM	68.78	2132 imgs/s
RigL	Original	72.00	3133 imgs/s
	SAM	72.75	1508 imgs/s
	S ² -SAM	72.44	3098 imgs/s
	Original	73.60	2981 imgs/s
MEST (EM)	SAM	74.88	1398 imgs/s
	S ² -SAM	74.58	2977 imgs/s

Robustness to Perturbations

- ImageNet-C Results: Show improvement in model robustness (Table 5). Table 5: Testing accuracy on ImageNet-C test set. We compare the results with and without S²-SAM using 80% sparsity.
- Implication: Wider loss basin correlates with better handling of data corruption.

Methods	ImageNet-1K Accuracy (%)	ImageNet-C Accuracy (%)
$\frac{\text{SNIP}}{\text{SNIP} + \text{S}^2 - \text{SAM}}$	69.70 70.55 (0.85↑)	31.12 34.87 (3.75↑)
GraSP GraSP + S ² -SAM	72.10 72.66 (0.56↑)	32.24 35.17 (2.93↑)
$\frac{\text{MEST (EM)}}{\text{MEST (EM)} + \text{S}^2\text{-SAM}}$	75.70 76.35 (0.65↑)	33.87 36.98 (3.11↑)
$\frac{\text{RigL}}{\text{RigL} + S^2 - \text{SAM}}$	74.60 75.39 (0.79↑)	33.68 36.80 (3.12↑)

Application to Dense Models

- **Results**: Applying S2-SAM on dense networks (Table 6).
- **Finding**: Effective even for models with lower parameter counts.

Table 6: Testing accuracy on dense model training. We compare original training with S^2 -SAM in same settings.

Networks	Params. Count	Original Accuracy (%)	S ² -SAM Accuracy (%)			
CIFAR-10						
ResNet-32	1.86M	94.58	94.99 (0.41↑)			
MobileNet-V2	2.30M	94.13	94.55 (0.42 [†])			
VGG-19	20.03M	94.21	94.48 (0.27 [†])			
ImageNet-1K						
EfficientNet-B0	5.30M	76.54	77.10 (0.56 [†])			
ResNet-34	21.80M	74.09	74.58 (0.49 [†])			
ResNet-50	25.50M	76.90	77.32 (0.42 [†])			

Conclusion & Contributions

• Contributions:

- Identification of chaotic loss surfaces as a challenge in sparse training.
- Development of S2-SAM, a zero-cost, plug-and-play sharpnessaware minimization.
- Theoretical and experimental validation of S2-SAM's effectiveness.
- Future Work: Potential applications to dense training.

THANK YOU!

- See you at Vancouver Convention Center!
- Our poster session: Thu 12 Dec 4:30 p.m. PST 7:30 p.m. PST