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Introduction

• Context: Growing size and complexity of DNNs demand efficient 
training methods.

• Challenge: Sparse training helps but struggles with generalization 
due to chaotic loss surfaces.

• Objective: Introduce S2-SAM to enhance sparse training with no 
extra computational cost.



Motivation & Problem Statement

• Insight: Sparse networks suffer from steep, chaotic loss surfaces 
as shown in visualization (Fig. 1).
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• Problem: Current sparse training methods often fail to achieve 
optimal generalization.

• Key Question: Can we improve generalization without sacrificing 
sparsity or efficiency?



Proposed Method - S2-SAM

• Concept: Single-step Sharpness-Aware Minimization.
• Innovation: Leverages prior gradient information to approximate 

perturbation in a single step.
• Benefit: Zero additional computational cost compared to 

traditional SAM.



Technical Overview

• SAM Recap: Two-step approach to find 
flatter minima.

• S2-SAM Approach: Uses prior gradients to 
compute perturbation (Equation reference 
from the paper).

• Diagram: Visualize the gradient flow (Fig. 2).



Theoretical Analysis

• Convergence Proof: Overview of theoretical backing and 
conditions.

• Assumptions: Unbiased gradient, smooth loss function, and 
bounded variance.

• Conclusion: S2-SAM guarantees convergence with minimal 
modifications.



Experimental Results Overview

• Datasets & Models: CIFAR-10, CIFAR-100 with ResNet-32 and 
VGG-19; ImageNet-1K with ResNet-50.

• Key Metrics: Accuracy improvement and training throughput.
• Summary: Consistent improvement across various sparsity levels 

and methods.



Detailed Experimental Results

• Table 1: Show test accuracy improvements with S2-SAM on 
CIFAR-10/100.

• Visualization: Loss surface comparison (Fig. 3) illustrating 
smoother loss with S2-SAM.

• Key Takeaway: Higher sparsity benefits more from S2-SAM.
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Training Efficiency

• Comparison: S2-SAM vs. SAM in terms of training speed (Table 4).
• Observation: S2-SAM maintains throughput close to original 

training methods.



Robustness to Perturbations

• ImageNet-C Results: Show 
improvement in model robustness 
(Table 5).

• Implication: Wider loss basin 
correlates with better handling of 
data corruption.



Application to Dense Models

• Results: Applying S2-SAM on 
dense networks (Table 6).

• Finding: Effective even for 
models with lower parameter 
counts.



Conclusion & Contributions

• Contributions: 
• Identification of chaotic loss surfaces as a challenge in sparse 

training.
• Development of S2-SAM, a zero-cost, plug-and-play sharpness-

aware minimization.
• Theoretical and experimental validation of S2-SAM's 

effectiveness.
• Future Work: Potential applications to dense training.



THANK YOU! • See you at Vancouver Convention Center!

• Our poster session: Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST
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