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● Two popular ML optimization frameworks have taken opposite trajectories:
○ (S)GD started by optimization using Gradients and recently moved to 0th 

order optimization with just loss function queries
○ Boosting started as a “native” 0th framework (no gradient usage assumed) 

but a substantial % of field quickly geared towards Gradient boosting
● Little is known on what loss functions can be optimized in boosting’s original 

framework, i.e. using a barely-better-than-random oracle, a weak learner
● Important question not just for boosting: all convergence rates for (S)GD → 0th 

order make assumptions about loss itself (cvx, diff., Lip., smooth, etc.)

Summary
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Summary

↪ Our paper settles the question: any loss with 
discontinuities forming a set of 0 Lebesgue measure 
(computer-wise, it means any loss)

↪ Our proof is constructive: we give an algorithm

↪ Boosting (convergence) rate has the optimal 1/𝛾2 
dependence in the weak learner’s advantage over 
random guessing 𝛾
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● At the core, (S)GD → 0th order replaces gradient with secant slope

● This = h-derivative in quantum calculus (calculus without derivatives), a field 
that also uses higher order quantities with several times the same offset

● Need a more general 1+-order notion where offsets can be a (multi)set:

Key tool

offset

“Quantum calculus”, Kac & Cheung 2002.
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Example, with two offsets, generalizes 2nd order derivative

(if F convex, then                                )
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● Architecture à-la-AdaBoost:
○ Linear combination,
○ Each dimension ← weak classifier
○ Leveraging coefficients (     ) computed during boosting

● Differences / generalization:
○ Weighting scheme for example and sample fed to weak learner
○ Each offset ← new oracle

Boosting: key facts

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24



● Weight vector at iteration t+1 of the form
↪ weights can be negative (all-positive iff F non-increasing)

● Sample for weak learner at iteration t is                                        (and weights      )
↪ labels can be flipped

● Need an offset oracle that provides at each iteration t the set of offsets
↪ any v such that the max elevation (secant - F) in interval defined by last 
edges does not exceed a specific bound

(in gradient boosting, v=0)

Key parts of the algorithm / generalization wrt boosting

=max



● The “specific bound” for offsets and the leveraging coefficient require a > 0 
upperbound           on a 2nd order v-derivative (curvature-like) parameter, i.e.:

Leveraging coefficients – general case

Tricky bit: contains the leveraging coefficient !
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● Can be easy to get a “nice” value if F has special properties
○ e.g. F 𝛽-smooth ⇒ can pick 
○ in such cases, range of boosting-compliant leveraging coefficients:

○    = expected empirical edge,        = max absolute weak learning prediction
○             user-fixed such that                                        (the smaller, the better) 

Leveraging coefficients – easy case
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● Otherwise, efficient algorithm giving all parameters at once (                      &      )

(Our boosting algorithm is called SecBoost, see paper for details)

Leveraging coefficients – hard case
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● Let the expected empirical loss of classifier H be
and its initial value (first constant classifier, e.g. 0)                             .

● Then, for any               s.t.                    , if SecBoost is run for #T iterations sat.

then                                   , assuming the following assumptions:                        

Boosting !

𝜌-Weak Convergence Regime 𝛾-Weak Learning Assumption

weights carry “information”

loss “jiggling” (→local mins.)



Toy Experiment

spring loss = 
logistic + Us

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

cvx, Lip., diff.
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