
How to Boost Any Loss Function

Richard Nock Yishay Mansour

● Two popular ML optimization frameworks have taken opposite trajectories:
○ (S)GD started by optimization using Gradients and recently moved to 0th

order optimization with just loss function queries
○ Boosting started as a “native” 0th framework (no gradient usage assumed)

but a substantial % of field quickly geared towards Gradient boosting
● Little is known on what loss functions can be optimized in boosting’s original

framework, i.e. using a barely-better-than-random oracle, a weak learner
● Important question not just for boosting: all convergence rates for (S)GD → 0th

order make assumptions about loss itself (cvx, diff., Lip., smooth, etc.)

Summary

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Two popular ML optimization frameworks have taken opposite trajectories:
○ (S)GD started by optimization using Gradients and recently moved to 0th

order optimization with just loss function queries
○ Boosting started as a “native” 0th framework (no gradient usage assumed)

but a substantial % of field quickly geared towards Gradient boosting
● Little is known on what loss functions can be optimized in boosting’s original

framework
● Important question because convergence rates for (S)GD → 0th order make

assumptions about loss (cvx, diff, Lip, smooth, etc.)

Summary

↪ Our paper settles the question: any loss with
discontinuities forming a set of 0 Lebesgue measure
(computer-wise, it means any loss)

↪ Our proof is constructive: we give an algorithm

↪ Boosting (convergence) rate has the optimal 1/𝛾2
dependence in the weak learner’s advantage over
random guessing 𝛾

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● At the core, (S)GD → 0th order replaces gradient with secant slope

● This = h-derivative in quantum calculus (calculus without derivatives), a field
that also uses higher order quantities with several times the same offset

● Need a more general 1+-order notion where offsets can be a (multi)set:

Key tool

offset

“Quantum calculus”, Kac & Cheung 2002.

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● At the core, (S)GD → 0th order replaces gradient with secant slope

● This = h-derivative in quantum calculus (calculus without derivatives), a field
that also uses higher order quantities with several times the same offset

● Need a more general 1+-order notion where offsets can be a (multi)set:

Key tool

offset

Example, with two offsets, generalizes 2nd order derivative

(if F convex, then)

“Quantum calculus”, Kac & Cheung 2002.

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Architecture à-la-AdaBoost:
○ Linear combination,
○ Each dimension ← weak classifier
○ Leveraging coefficients () computed during boosting

● Differences / generalization:
○ Weighting scheme for example and sample fed to weak learner
○ Each offset ← new oracle

Boosting: key facts

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Weight vector at iteration t+1 of the form
↪ weights can be negative (all-positive iff F non-increasing)

● Sample for weak learner at iteration t is (and weights)
↪ labels can be flipped

● Need an offset oracle that provides at each iteration t the set of offsets
↪ any v such that the max elevation (secant - F) in interval defined by last
edges does not exceed a specific bound

(in gradient boosting, v=0)

Key parts of the algorithm / generalization wrt boosting

=max

● The “specific bound” for offsets and the leveraging coefficient require a > 0
upperbound on a 2nd order v-derivative (curvature-like) parameter, i.e.:

Leveraging coefficients – general case

Tricky bit: contains the leveraging coefficient !

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Can be easy to get a “nice” value if F has special properties
○ e.g. F 𝛽-smooth ⇒ can pick
○ in such cases, range of boosting-compliant leveraging coefficients:

○ = expected empirical edge, = max absolute weak learning prediction
○ user-fixed such that (the smaller, the better)

Leveraging coefficients – easy case

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Otherwise, efficient algorithm giving all parameters at once (&)

(Our boosting algorithm is called SecBoost, see paper for details)

Leveraging coefficients – hard case

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

● Let the expected empirical loss of classifier H be
and its initial value (first constant classifier, e.g. 0) .

● Then, for any s.t. , if SecBoost is run for #T iterations sat.

then , assuming the following assumptions:

Boosting !

𝜌-Weak Convergence Regime 𝛾-Weak Learning Assumption

weights carry “information”

loss “jiggling” (→local mins.)

Toy Experiment

spring loss =
logistic + Us

Nock & Mansour, “How to Boost Any Loss Function”, NeurIPS’24

cvx, Lip., diff.

Thank You
Richard Nock
Yishay Mansour

Google Research
Tel Aviv University and Google Research

