How to Boost Any Loss Function

Richard Nock

Google Research

Summary

- Two popular ML optimization frameworks have taken opposite trajectories:
 - (S)GD started by optimization using Gradients and recently moved to 0th order optimization with just loss function queries
 - Boosting started as a "native" Oth framework (no gradient usage assumed) but a substantial % of field quickly geared towards Gradient boosting
- Little is known on what loss functions can be optimized in boosting's original framework, *i.e.* using a barely-better-than-random oracle, a *weak learner*
- Important question not just for boosting: all convergence rates for (S)GD \rightarrow Oth order make assumptions about loss itself (cvx, diff., Lip., smooth, etc.)

Google Research

Summary

•	Two popul o (S)GD order	→ Our paper settles the question: any loss with discontinuities forming a set of 0 Lebesgue measure (computer-wise, it means any loss)	ajectories: moved to O th
	• BOOSt	↔ Our proof is constructive: we give an algorithm	age assumed)
•	Little is kno	Our proof is constructive: we give an algorithm	ng's original
	framework	\Rightarrow Boosting (convergence) rate has the optimal $1/\gamma^2$	5 5
•	Important	dependence in the weak learner's advantage over random guessing γ	order make
	assumptio	5 57	

Google Research

Key tool

• At the core, $(S)GD \rightarrow O^{th}$ order replaces gradient with secant slope

$$\delta_v F(z) \doteq \frac{F(z+v) - F(z)}{v}$$
 offset

- This = *h*-derivative in *quantum calculus* (calculus without derivatives), a field that also uses higher order quantities with several times the same offset
- Need a more general 1⁺-order notion where offsets can be a (multi)set:

$$\delta_{\mathcal{V}}F(z) \doteq \begin{cases} F(z) & \text{if} \quad \mathcal{V} = \emptyset \\ \delta_v F(z) & \text{if} \quad \mathcal{V} = \{v\} \\ \delta_{\{v\}}(\delta_{\mathcal{V} \setminus \{v\}}F)(z) & \text{otherwise Google Research} \\ \text{Nock & Mansour, "How to Boost Any Loss Function", NeurIPS'24} \end{cases}$$

Key tool

• At the Example, with two offsets, generalizes
$$2^{nd}$$
 order derivative

$$\delta_{\{b,c\}}F(a) = \frac{2}{b} \cdot \frac{1}{c} \cdot \left(\frac{F(a+b+c)+F(a)}{2} - \frac{F(a+b)+F(a+c)}{2}\right)$$
a field et
• This that a (if F convex, then $\delta_{\{b,c\}}F(a) \ge 0$)
• Need a more general 1⁺-order notion where offsets can be a (multi)set:

$$\delta_{\mathcal{V}}F(z) \doteq \begin{cases} F(z) & \text{if } \mathcal{V} = \emptyset \\ \delta_{v}F(z) & \text{if } \mathcal{V} = \{v\} \\ \delta_{\{v\}}(\delta_{\mathcal{V}\setminus\{v\}}F)(z) & \text{otherwise Google Research} \\ Nock & Mansour, "How to Boost Any Loss Function", NeurIPS'24 \end{cases}$$

Boosting: key facts

- Architecture à-la-AdaBoost:
 - Linear combination, $H_T = \sum_{t \in [T]} \alpha_t h_t$
 - Each dimension \leftarrow weak classifier
 - Leveraging coefficients ($lpha_t$) computed during boosting
- Differences / generalization:
 - Weighting scheme for example and sample fed to weak learner
 - Each offset ← new oracle

Google Research

Key parts of the algorithm / generalization wrt boosting

- Weight vector at iteration t+1 of the form $\boldsymbol{w}_{t+1} = -[\delta_{\boldsymbol{v}_{ti}}F(y_iH_t(\boldsymbol{x}_i))]_i$ \hookrightarrow weights can be negative (all-positive iff F non-increasing)
- Sample for weak learner at iteration t is $S_t \doteq \{(x_i, y_i \cdot \text{sign}(w_{ti}))\}_i$ (and weights $|w_t|$) \hookrightarrow labels can be flipped
- Need an offset oracle that provides at each iteration t the set of offsets {v_{ti}}_i
 → any v such that the max elevation (secant F) in interval defined by last edges does not exceed a specific bound

(in gradient boosting, v=0)

Leveraging coefficients – general case

• The "specific bound" for offsets **and** the leveraging coefficient require a > 0 upperbound $\overline{w}_{2,t}$ on a 2nd order *v*-derivative (curvature-like) parameter, i.e.:

$$\mathbb{E}_{i\sim[m]}\left[\delta_{\substack{\{\alpha_{t}y_{i}h_{t}(\boldsymbol{x}_{i}), \boldsymbol{v}_{(t-1)i}\}}}F(y_{i}H_{t-1}(\boldsymbol{x}_{i})) \cdot \left(\frac{h_{t}(\boldsymbol{x}_{i})}{M_{t}}\right)^{2}\right] \leqslant \overline{w}_{2,t}$$
Tricky bit: contains the leveraging coefficient !

Google Research

Leveraging coefficients – easy case

- Can be easy to get a "nice" value if *F* has special properties
 - e.g. F $_{eta}$ -smooth \Rightarrow can pick $\overline{w}_{2,t}=2eta$
 - in such cases, *range* of boosting-compliant leveraging coefficients:

$$\alpha_t \in \frac{\eta_t}{2(1+\varepsilon_t)M_t^2 \overline{w}_{2,t}} \cdot \begin{bmatrix} 1-\pi_t, 1+\pi_t \end{bmatrix}}{t}$$

 $\circ \eta_t$ = expected empirical edge, M_t = max absolute weak learning prediction $\circ \varepsilon_t, \pi_t$ user-fixed such that $\varepsilon_t > 0, \pi_t \in (0, 1)$ (the smaller, the better)

Google Research

Leveraging coefficients – hard case

• Otherwise, efficient algorithm giving all parameters at once ($lpha_t, arepsilon_t, \overline{w}_{2,t} \& \pi_t$)

(Our boosting algorithm is called SecBoost, see paper for details)

Google Research

Boosting!

- Let the expected empirical loss of classifier H be $F(\mathcal{S}, H) \doteq \mathsf{E}_{i\sim[m]}[F(y_iH(x_i))]$ and its initial value (first constant classifier, e.g. 0) $F_0 \doteq F(\mathcal{S}, h_0)$.
- Then, for any $z \in \mathbb{R}$ s.t. $F(z) \leq F_0$, if SecBoost is run for #*T* iterations sat.

$$T \ge \frac{4(F_0 - F(z))}{\gamma^2 \rho} \cdot \frac{1 + \max_t \varepsilon_t}{1 - \max_t \pi_t^2}$$

then $F(\mathfrak{S}, H_T) \leq F(z)$, assuming the following assumptions:

 γ -Weak Learning Assumption

$$\left|\mathbb{E}_{\tilde{\boldsymbol{w}}_{t}}\left[\tilde{y}_{ti}\cdot\frac{h_{t}(\boldsymbol{x}_{i})}{M_{t}}\right]\right| \geq \gamma > 0$$
 Google Research

Toy Experiment

Thank You

Richard Nock Yishay Mansour Google Research Tel Aviv University and Google Research

Google Research