

Adaptive Randomized Smoothing: Certified Adversarial Robustness for Multi-Step Defences

Saiyue Lyu*, Shadab Shaikh*, Frederick Shpilevskiy*, Evan Shelhamer, Mathias Lécuyer

Adversarial Examples

Adversarial Examples (AE): test-time attacks to control model
predictions with small crafted input perturbations.

 The power of the adversary is determined by the maximum size of the attack:

$$\ell_2 \text{ attack:} \| \|_2 \qquad \ell_\infty \text{ attack:} \| \|_\infty$$

 Randomized Smoothing can provide provable defenses against adversarial examples!

Randomized Smoothing (RS)

- Randomized Smoothing gives provable robustness by averaging over noisy predictions:
- Theorem (Cohen et al. 2019): with $\mathbb{P}(f(X+z) = y_+) \ge \underline{p_+} \ge \overline{p_-} \ge \max_{y_- \neq y_+} \mathbb{P}(f(X+z) = y_-)$ we have: No \mathscr{C}_2 attack with $\| \|_2 \le r_X = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_+}) - \Phi^{-1}(\overline{p_-}) \right)$ certificate

Source: Cohen et. al., "Certified adversarial robustness via randomized smoothing", ICML 2019.

Limitations of RS

- Noise degrades accuracy.
- Difficulty scaling to high dimensional inputs for ℓ_{∞} threat models:

$$r_X \le \| \qquad \|_2 \le \sqrt{d} \| \qquad \|_\infty$$

 Does not support test-time adaptivity to adapt the accuracy/robustness tradeoff to the input.

We use Gaussian differential privacy to address these shortcomings!

Gaussian Differential Privacy

- We can frame privacy as a hypothesis test between \mathcal{H}_0 : D and \mathcal{H}_1 : D' (i.e. does $x \in D$?). This enables a hypothesis test definition of DP.
- A tradeoff function f bounds the power of any statistical test of \mathcal{H}_0 v.s. \mathcal{H}_1 .

(Theorem 2.7 Dong et al. 2019) For a Gaussian mechanism $\mathcal{M}(D) = \theta(D) + \theta(D)$ $z, z \sim \mathcal{N}\left(0, \frac{r^2}{\mu^2}\right)$, such that for any neighboring $D, D', \theta(D) - \theta(D') \in B_2(r)$ (i.e., the ℓ_2 sensitivity of θ is r), we have that \mathcal{M} is G_{μ} -DP with function $f = G_{\mu}$ defined by : $G_{\mu}(\alpha) = \Phi(\Phi^{-1}(1-\alpha) - \mu)$, for all $\alpha \in [0,1]$

• **Composition:** the composition of an G_{μ_1} -DP Gaussian mechanism and an G_{μ_2} -DP Gaussian mechanism is G_{μ} -DP Gaussian mechanism with $\mu = \sqrt{\mu_1^2 + \mu_2^2}$.

Source: Jinshuo Dong, Aaron Roth, and Weijie J Su. 'Gaussian differential privacy'. In: arXiv (2019), Journal of the Royal Statistical Society (2022). 5

GDP and Randomized Smoothing

GDP under neighbouring definition $D' = D + \delta$, $\|\delta\|_p \leq r$.

- We prove that our GDP randomized smoothing mechanism satisfies $f(1-\underline{p_+}) \ge 1 f(\overline{p_-}) \Rightarrow \forall \|\delta\|_p \le r, \ M_S(D+\delta) = y_+$
- Using this result and GDP, we prove that:

No
$$\mathscr{C}_2$$
 attack is possible with $\| \|_2 \leq r_X = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_+}) - \Phi^{-1}(\overline{p_-}) \right)$

Adaptive Randomized Smoothing for ℓ_∞

Adaptive Randomized Smoothing for ℓ_∞

Adaptive Randomized Smoothing for ℓ_∞

Why does ARS help?

Noise reduction from masking based dimension reduction!

Evaluations

CelebA

Input images

ARS Masks

Second query noised images after averaging

Conclusion

- Adaptive Randomized Smoothing (ARS) uses DP composition postprocessing properties to certify adaptive multi-step models.
- ARS learns to adjust the scale of noise based on the test input.
- ARS provides higher accuracy at a given level of provable robustness.

Link to our code

