

Adaptive Randomized Smoothing: Certified Adversarial Robustness for Multi-Step Defences

Saiyue Lyu*, Shadab Shaikh*, Frederick Shpilevskiy*, Evan Shelhamer, Mathias Lécuyer

Adversarial Examples

• **Adversarial Examples (AE): test-time attacks to control model predictions with small crafted input perturbations.**

• **The power of the adversary is determined by the maximum size of the attack:**

$$
\ell_2
$$
 attack: $\|\hspace{1.5cm}\|_2$ ℓ_∞ attack: $\|\hspace{1.5cm}\|_\infty$

• **Randomized Smoothing can provide provable defenses against adversarial examples!**

Randomized Smoothing (RS)

- **Randomized Smoothing gives provable robustness by averaging over noisy predictions:**
- **Theorem** (Cohen et al. 2019): with $\mathbb{P}(f(X+z) = y_+) \ge p_+ \ge \overline{p_-} \ge \max \mathbb{P}(f(X+z) = y_-)$ $y_+\neq y_+$ **we have:** $\big(\Phi^{-1}(p_{+})$ $\| \cdot \|_2 \leq r_X$ No ℓ_2 attack with \parallel **certificate**

3 Source: Cohen et. al., "Certified adversarial robustness via randomized smoothing", ICML 2019.

Limitations of RS

- **Noise degrades accuracy.**
- Difficulty scaling to high dimensional inputs for ℓ_{∞} threat models:

$$
r_X \le || \qquad ||_2 \le \sqrt{d} || \qquad ||_{\infty}
$$

• **Does not support test-time adaptivity to adapt the accuracy/robustness tradeoff to the input.**

We use Gaussian differential privacy to address these shortcomings!

Gaussian Differential Privacy

- We can frame privacy as a hypothesis test between $\mathcal{H}_0: D$ and $\mathcal{H}_1: D'$ (i.e. does $x \in D$?). This enables a hypothesis test definition of DP.
- A tradeoff function *f* bounds the power of any statistical test of \mathcal{H}_0 v.s. \mathcal{H}_1 .

(Theorem 2.7 Dong et al. 2019) For a Gaussian mechanism $\mathcal{M}(D) = \theta(D) +$, z~ 0, r^2 $\left(\frac{r^2}{\mu^2}\right)$, such that for any neighboring D , D' , $\theta(D)$ - $\theta(D')\in B_2(r)$ (i.e., the ℓ_2 sensitivity of θ is r), we have that $\mathcal M$ is G_μ -DP with function $f = G_\mu$ defined by : $G_{\mu}(\alpha) = \Phi(\Phi^{-1}(1-\alpha) - \mu)$, for all $\alpha \in [0,1]$

• **Composition:** the composition of an G_{μ_1} -DP Gaussian mechanism and an G_{μ_2} -DP Gaussian mechanism is G_{μ} -DP Gaussian mechanism with $\mu = \sqrt{\mu_1^2 + \mu_2^2}$.

5 Source: Jinshuo Dong, Aaron Roth, and Weijie J Su. 'Gaussian differential privacy'. In: arXiv (2019), Journal of the Royal Statistical Society (2022).

GDP and Randomized Smoothing

GDP under neighbouring definition $D' = D + \delta$, $\|\delta\|_p \le r$.

- **We prove that our GDP randomized smoothing mechanism satisfies** $f(1-p_+) \geq 1 - f(\overline{p_-}) \Rightarrow \forall ||\delta||_p \leq r, M_S(D+\delta) = y_+$
- **Using this result and GDP, we prove that:**

No
$$
\ell_2
$$
 attack is possible with $\|\cdot\|_2 \le r_X = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_+}) - \Phi^{-1}(\overline{p_-}))$

Adaptive Randomized Smoothing for ℓ_{∞}

Adaptive Randomized Smoothing for ℓ_{∞}

Adaptive Randomized Smoothing for ℓ_{∞}

Why does ARS help?

Noise reduction from masking based dimension reduction!

Evaluations

• **CelebA**

Input images

ARS Masks

Second query noised images after averaging

Conclusion

- **Adaptive Randomized Smoothing (ARS) uses DP composition postprocessing properties to certify adaptive multi-step models.**
- **ARS learns to adjust the scale of noise based on the test input.**
- **ARS provides higher accuracy at a given level of provable robustness.**

Link to our code

