Analysis of Corrected Graph Convolutions

Robert Wang, Aseem Baranwal, Kimon Fontoulakis University of Waterloo

Graph Neural Networks (GNN)

- Input: A graph with an associated feature vector at each node
- Assumption: graph and the features are correlated and we wish to learn some signal from the input
- GNN takes the features as input to a neural network, and incorporates the graph into its architecture

Contextual Stochastic Block Model (CSBM)

+

Graph ~ Stochastic Block Model

Features ~ Gaussian Mixture Model

Graph (Convolution: X	$\mapsto \qquad \underbrace{M^k}_{\overset{k}{\longrightarrow}} X$
Graph	Feature Matrix Adjacency Matrix	Convolution Matrix Degree Matrix
	$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	$D = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} $ Average degree $d = 2.5$
<i>M</i> matrix	Un-Normalized	Normalized
Standard	A	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
Corrected	$A - \frac{d}{n} 11^{T}$ "Expected" top eigenvector	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}} - \frac{1}{\underbrace{1^{T}D1}}D^{\frac{1}{2}}11^{T}D^{\frac{1}{2}}$ Normalized top eigenvector

Spectral Decomposition $M^k = \lambda_1^k v_1 v_1^\top + \underbrace{\sum_{i=2}^n \lambda_i^k v_i v_i^\top}_{i \in \mathbb{N}}$

М

Dominating signal Corrected Convolution Matrix

 M^k

Oversmoothing in uncorrected Convolutions

Variance Reduction leads to increased accuracy

Aggregation of means leads to decreased accuracy

variance reduction without aggregation of the means

Classifiers

Linear (binary) Classifier: $X \mapsto M^k X \underbrace{w}_{\text{Trainable parameters}} + \underbrace{b}_{\text{Trainable parameters}}$

- Data is *Linearly Separable* if all entries in one class are positive and all entries in the other class is negative
- For multi-class data, can apply a linear classifier to each class

Non-linear Classifier:
$$softmax \left(||x_i^{(k)} - c_1||^2, ||x_i^{(k)} - c_2||^2, ... \right)_{i=1}^n$$

Trainable parameters

Where
$$x_1^{(k)}$$
, ... $x_n^{(k)}$ are rows of the matrix $M^k X$

Binary Classification: Partial Recovery

• Parameters

Graph Signal:
$$\gamma = \frac{(p-q)\sqrt{np}}{p+q}$$

Feature Separation: $\Delta = ||\mu_1 - \mu_2||$

Binary Classification: Partial Recovery

• Parameters

Graph Signal:
$$\gamma = \frac{(p-q)\sqrt{np}}{p+q}$$

• Assumptions

Feature Separation: $\Delta = ||\mu_1 - \mu_2||$

$$p+q \ge \Omega(\frac{\log^2 n}{n})$$
 $\gamma \ge \Omega(1)$ $\frac{\Delta}{\sigma} \ge \sqrt{\frac{\log n}{n}}$

Binary Classification: Partial Recovery

• Parameters

Graph Signal:
$$\gamma = \frac{(p-q)\sqrt{np}}{p+q}$$

Assumptions

Feature Separation: $\Delta = ||\mu_1 - \mu_2||$

$$p+q \ge \Omega(\frac{\log^2 n}{n})$$
 $\gamma \ge \Omega(1)$ $\frac{\Delta}{\sigma} \ge \sqrt{\frac{\log n}{n}}$

• Main Result: There is a linear classifier using k corrected convolutions that, with high probability, has error rate at most

$$O\left(\frac{1}{\gamma^2} + \left(\frac{C}{\gamma^2}\right)^{2k} \cdot \frac{\sigma^2}{\Delta^2} \log n\right)$$

Binary Classification: Exact Recovery

Suppose our parameter satisfy the addition assumptions that:

$$p+q \ge \Omega(\frac{\log^3 n}{n})$$
 $\gamma \ge \Omega(k\sqrt{\log n})$ $\frac{\Delta}{\sigma} \ge \left(\frac{C}{\gamma}\right)^{2k}\sqrt{\log n}$

Then the features are linearly separable after k convolutions with high probability

Two-Class Experiments

Figure: Synthetic experiments with n = 2000 and feature dimension 20 averaged over 50 trials. Green line is convolution with corrected un-normalized adjacency matrix. Orange line is convolution with normalized adjacency matrix, where v is its top eigenvector.

Multi-Class Classification: Partial Recovery

• Parameters: suppose we have L balanced classes with means $\mu_1, ..., \mu_L$

Graph Signal:
$$\gamma = \frac{(p-q)\sqrt{np}}{\sqrt{Lp(1-p)} + L\sqrt{q(1-q)}}$$
 Feature Separation: $\Delta = \min_{i,j} ||\mu_1 - \mu_2||$

• Assumptions

$$p+q \ge \Omega(\frac{\log^2 n}{n})$$
 $\gamma \ge \Omega(k)$ $\frac{\Delta}{\sigma} \ge \sqrt{\frac{\log n}{n}}$

• Main Result: There is a linear classifier using k corrected convolutions that, with high probability, has error rate at most

$$O\left(\frac{k^2}{\gamma^2} \cdot \frac{\sum_i ||\mu_i||^2}{L\Delta^2} + \left(\frac{L}{n} + \left(\frac{C}{\gamma^2}\right)^{2k}\right) \cdot \frac{\sigma^2}{\Delta^2} \log n \right)$$

Thanks for Watching