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Introduction



Introduction

Meta Learning
Leverages previous experience as priors to quickly 
adapt to unseen tasks .

 Robustness Concern
Worst fast adaptation can be catastrophic in risk-
sensitive scenarios, e.g., autonomous driving .

It is desirable to watch adaptation differences across tasks when deploying meta learning models.

Source: MAML[1]

Source: RoML[2]



Introduction
 Previous Works

DR-MAML [3] increases task distributional robustness via employing the tail risk 
minimization principle for meta learning.

(i) Estimate the risk quantile 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼with the crude Monte Carlo method in the task 
space.

(ii) Update the meta learning model parameters from the screened subset of tasks. 

Two-stage 
optimization 
strategy



Introduction
 Existing Limitations

• Theoretically
(i) There constitutes no notion of solutions.
(ii) Lacks an algorithmic understanding of the two-stage optimization strategy. 
(iii)The analysis on generalization capability is ignored in the tail risk of tasks.

• Empirically
The use of the crude Monte Carlo might be less efficient in quantile estimates 
and suffers from a higher approximation error of the 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼, degrading the 
adaptation robustness.

We propose translating the two-stage optimization strategy for distributionally 
robust meta learning into a max-min optimization problem .



Preliminaries



Preliminaries

 Notations
Task distribution 𝑝𝑝 𝜏𝜏 defined in task space 𝛺𝛺𝜏𝜏; the set of all tasks 𝒯𝒯; Meta dataset 𝔇𝔇𝜏𝜏, 
e.g.,𝔇𝔇𝜏𝜏 = { 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 }𝑖𝑖=1

𝑚𝑚 = 𝔇𝔇𝜏𝜏
𝑆𝑆 ∪𝔇𝔇𝜏𝜏

𝑄𝑄 in few-shot regression problems; Parameter space Θ

Meta risk function ℓ:𝔇𝔇𝜏𝜏 × Θ ↦ ℝ+ evaluating fast adaptation performance;
Cumulative distribution of the meta risk function 

𝐹𝐹ℓ 𝑙𝑙; 𝜃𝜃 : =ℙ {ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 ≤ 𝑙𝑙; 𝜏𝜏 ∈ 𝒯𝒯, 𝑙𝑙 ∈ ℝ+}



Value-at-risk (VaR𝛼𝛼)
VaR𝛼𝛼 ℓ 𝒯𝒯,𝜃𝜃 = inf𝑙𝑙∈ℝ+{𝑙𝑙|𝐹𝐹ℓ 𝑙𝑙;𝜃𝜃 ≥ 𝛼𝛼, 𝜏𝜏 ∈ 𝒯𝒯}

Conditional value-at-risk (CVaR𝛼𝛼)
CVaR𝛼𝛼 = 𝔼𝔼𝑝𝑝 𝜏𝜏 ℓ|ℓ ≥ VaR𝛼𝛼

Normalized cumulative distribution 𝐹𝐹ℓ𝛼𝛼 𝑙𝑙; 𝜃𝜃 ;

Tail risk task subspace 𝛺𝛺𝛼𝛼,𝜏𝜏;

Density function 𝑝𝑝𝛼𝛼 𝜏𝜏; 𝜃𝜃

Preliminaries

 Notations



Risk Minimization Principles

 Expected Risk Minimization. It minimizes meta risk based on the sampling 
chance of tasks from the original task distribution:

min
𝜃𝜃∈Θ

ℰ 𝜃𝜃 : =𝔼𝔼𝑝𝑝 𝜏𝜏 ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 .

Worst-case Risk Minimization. Noticing that the worst fast adaptation can be 
disastrous in some risk sensitive scenarios,  [4] proposes to conduct the worst-
case optimization in meta learning:

min
𝜃𝜃∈Θ

max
𝜏𝜏∈𝒯𝒯

ℰw 𝜃𝜃 : = ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 .



Risk Minimization Principles

 Expected Tail Risk Minimization (CVaR𝛼𝛼). To balance the average performance 
and the worst-case performance,  [3] minimizes the expected tail risk, or 
equivalently CVaR𝛼𝛼 risk measure:

min
𝜃𝜃∈Θ,𝜉𝜉∈ℝ

ℰ𝛼𝛼 𝜃𝜃, 𝜉𝜉 : =
1

1 − 𝛼𝛼
�
𝛼𝛼

1
𝑣𝑣𝛽𝛽 𝑑𝑑𝑑𝑑 = 𝜉𝜉 +

1
1 − 𝛼𝛼

𝔼𝔼𝑝𝑝 𝜏𝜏 ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 − 𝜉𝜉
+

,

𝑣𝑣𝛽𝛽: =𝐹𝐹ℓ−1 𝑑𝑑 denotes the quantile statistics 

ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 − 𝜉𝜉
+

: = max{ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 − 𝜉𝜉, 0} is the hinge risk.



Examples

Example 1 (DR-MAML ).  
Given 𝑝𝑝 𝜏𝜏 and vanilla MAML [1], the distributionally robust MAML within CVaR𝛼𝛼 can be 
written as a bi-level optimization problem: 

min
𝜃𝜃∈Θ
𝜉𝜉∈ℝ

𝜉𝜉 +
1

1 − 𝛼𝛼
𝔼𝔼𝑝𝑝 𝜏𝜏 ℓ 𝔇𝔇𝜏𝜏

𝑄𝑄;𝜃𝜃 − 𝜆𝜆∇𝜃𝜃ℓ 𝔇𝔇𝜏𝜏
𝑆𝑆;𝜃𝜃 − 𝜉𝜉

+
,

where the gradient update w.r.t. the support set ∇𝜃𝜃ℓ 𝔇𝔇𝜏𝜏
𝑆𝑆;𝜃𝜃 indicates the inner loop with a 

learning rate 𝜆𝜆. The outer loop executes the gradient updates and seeks the robust meta 
initialization in the parameter space. 



Two-Stage Optimization Strategies

𝜃𝜃𝑡𝑡
𝜏𝜏𝑖𝑖 = 𝜃𝜃𝑡𝑡meta − 𝜆𝜆1∇𝜃𝜃ℓ 𝔇𝔇𝜏𝜏𝑖𝑖

𝑆𝑆 ;𝜃𝜃 , 𝑖𝑖 = 1, … ,ℬ
𝜉𝜉 = �𝐹𝐹MC−ℬ

−1 𝛼𝛼 ,

𝛿𝛿 𝜏𝜏𝑖𝑖 = 1 ℓ 𝔇𝔇𝜏𝜏𝑖𝑖
𝑄𝑄 ;𝜃𝜃𝑡𝑡

𝜏𝜏𝑖𝑖 ≥ 𝜉𝜉 , 𝑖𝑖 = 1, … ,ℬ

𝜃𝜃𝑡𝑡+1meta ← 𝜃𝜃𝑡𝑡meta − 𝜆𝜆2 �
𝑖𝑖=1

ℬ

∇𝜃𝜃 𝛿𝛿 𝜏𝜏𝑖𝑖 ⋅ ℓ 𝔇𝔇𝜏𝜏𝑖𝑖
𝑄𝑄 ;𝜃𝜃𝑡𝑡

𝜏𝜏𝑖𝑖 .

The pipelines of DR-MAML (Example 1):

Stage-I includes the fast adaptation 
w.r.t. individual task in Eq. (1) and the 
quantile estimate in Eq. (2)
Stage-II applies the sub-gradient 
updates to the model parameters in 
Eq. (3)/(4). 

(1)

(4)

(2)
(3)

These two stages repeat until reaching the convergence required iterations.



Theoretical Investigations



The Sketch of our Study

On the left side is the two-stage distributionally robust strategy.

The contributed theoretical understanding is right-down, with the right-up the empirical improvement.



Max-Min Optimization

Max-Min Optimization. With the pre-assigned decision-making orders, the 
studied problem can be characterized as:

max
𝑞𝑞 𝜏𝜏 ∈𝒬𝒬𝛼𝛼

min
𝜃𝜃∈Θ

ℱ 𝑞𝑞,𝜃𝜃 : =𝔼𝔼𝑞𝑞 𝜏𝜏 ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 ,

where 𝒬𝒬𝛼𝛼: = {𝑞𝑞 𝜏𝜏 |𝒯𝒯𝑞𝑞 ⊆ 𝒯𝒯,∫𝜏𝜏∈𝒯𝒯𝑞𝑞 𝑝𝑝 𝜏𝜏 𝑑𝑑𝜏𝜏 = 1 − 𝛼𝛼} constitutes a collection of uncertainty 
sets over task subspace 𝒯𝒯𝑞𝑞, and 𝑞𝑞 𝜏𝜏 is the normalized probability density over the 
task subspace.

In the two-stage optimization strategy, the default is the minimization of the risk 
measure w.r.t. the parameter space after the maximization of the risk measure w.r.t.
the task subspace.



Stackelberg Game

 Stackelberg Game: the example pipelines can be understood as approximately 
solving a stochastic two-player zero-sum Stackelberg game 
𝒮𝒮𝒮𝒮: = ⟨𝒫𝒫𝐿𝐿,𝒫𝒫𝐹𝐹; {𝑞𝑞 ∈ 𝒬𝒬𝛼𝛼}, {𝜃𝜃 ∈ Θ};ℱ 𝑞𝑞,𝜃𝜃 ⟩.

𝒮𝒮𝒮𝒮: 𝑞𝑞𝑡𝑡 = argmax
𝑞𝑞∈𝒬𝒬𝛼𝛼

𝔼𝔼𝑞𝑞 ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆; 𝜃𝜃𝑡𝑡
⏟

Leader Player

,

𝜃𝜃𝑡𝑡+1 = argmin
𝜃𝜃∈Θ

𝔼𝔼𝑞𝑞𝑡𝑡 ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆; 𝜃𝜃 ,
⏟

Follower Player

 Best Responses:



Solution Concept

 Definition (Local Stackelberg Equilibrium).  

Let 𝑞𝑞∗,𝜃𝜃∗ ∈ 𝒬𝒬𝛼𝛼 × Θ be the solution. With the leader 𝑞𝑞∗ ∈ 𝒬𝒬𝛼𝛼 and the follower 
𝜃𝜃∗ ∈ Θ, 𝑞𝑞∗,𝜃𝜃∗ is called a local Stackelberg equilibrium for the leader if the 
following inequalities hold, 

inf
𝜃𝜃∈𝒮𝒮Θ′ 𝑞𝑞∗

ℱ 𝑞𝑞∗,𝜃𝜃 ≥ inf
𝜃𝜃∈𝒮𝒮Θ′ 𝑞𝑞

ℱ 𝑞𝑞,𝜃𝜃 ,

where 𝒮𝒮Θ′ 𝑞𝑞 : = { ‾𝜃𝜃 ∈ Θ′|ℱ 𝑞𝑞, ‾𝜃𝜃 ≤ ℱ 𝑞𝑞,𝜃𝜃 ,∀𝜃𝜃 ∈ Θ′}.

 Interpretation of the Obtained Equilibrium 𝒒𝒒∗,𝜽𝜽∗ .  

Given the follower's decision 𝜃𝜃∗ and the induced task risk distribution 𝐹𝐹ℓ 𝑙𝑙; 𝜃𝜃∗ , 
the leader cannot further raise a proposal of a task subset with a probability 1 −
𝛼𝛼 to degrade the tailed expected performance.



Convergence Rate

 Assumption 1 
1. The meta risk function ℓ 𝔇𝔇𝜏𝜏

𝑄𝑄,𝔇𝔇𝜏𝜏
𝑆𝑆;𝜃𝜃 is 𝑑𝑑𝜏𝜏-Lipschitz continuous w.r.t. 𝜃𝜃; 

2. The cumulative distribution 𝐹𝐹ℓ 𝑙𝑙;𝜃𝜃 is 𝑑𝑑ℓ-Lipschitz continuous w.r.t. 𝑙𝑙, and the normalized density 
function 𝑝𝑝𝛼𝛼 𝜏𝜏;𝜃𝜃 is 𝑑𝑑𝜃𝜃-Lipschitz continuous w.r.t. 𝜃𝜃; 

3. For arbitrary valid 𝜃𝜃 ∈ Θ and corresponding 𝑝𝑝𝛼𝛼 𝜏𝜏;𝜃𝜃 , ℓ 𝔇𝔇𝜏𝜏
𝑄𝑄,𝔇𝔇𝜏𝜏

𝑆𝑆;𝜃𝜃 is bounded:

sup
𝜏𝜏∈𝛺𝛺𝛼𝛼,𝜏𝜏

ℓ 𝔇𝔇𝜏𝜏𝑖𝑖
𝑄𝑄 ,𝔇𝔇𝜏𝜏𝑖𝑖

𝑆𝑆 ;𝜃𝜃 ≤ ℒmax.

 Assumption 2 
The implicit function ℎ ⋅ is 𝑑𝑑ℎ-Lipschitz continuous w.r.t. 𝜃𝜃 ∈ Θ, and ∇𝜃𝜃ℱ 𝑞𝑞,𝜃𝜃 is 𝑑𝑑𝑞𝑞-Lipschitz 
continuous w.r.t. 𝑞𝑞 ∈ 𝒬𝒬𝛼𝛼.



Convergence Rate

 Theorem 1 (Convergence Rate for the Second Player).  

Let the iteration sequence in optimization be: ⋯ ↦ {𝑞𝑞𝑡𝑡−1,𝜃𝜃𝑡𝑡} ↦ {𝑞𝑞𝑡𝑡,𝜃𝜃𝑡𝑡+1} ↦ ⋯ ↦ {𝑞𝑞∗,𝜃𝜃∗}, with 
the converged equilibirum 𝑞𝑞∗,𝜃𝜃∗ . Under the Assumption 2 and suppose that �

�
𝐼𝐼 −

𝜆𝜆∇𝜃𝜃𝜃𝜃2 ℱ 𝑞𝑞∗,𝜃𝜃∗ 2 < 1 − 𝜆𝜆𝑑𝑑𝑞𝑞𝑑𝑑ℎ, we can have lim𝑡𝑡→∞
𝜃𝜃𝑡𝑡+1−𝜃𝜃∗ 2
𝜃𝜃𝑡𝑡−𝜃𝜃∗ 2

≤ 1, and the iteration converges 

with the rate 𝐼𝐼 − 𝜆𝜆∇𝜃𝜃𝜃𝜃2 ℱ 𝑞𝑞∗,𝜃𝜃∗ 2 + 𝜆𝜆𝑑𝑑𝑞𝑞𝑑𝑑ℎ .



Convergence Rate

 Theorem 2 (Asymptotic Performance Gap in Tail Task Risk).  

Under the Assumption 1 and given a batch of tasks {𝜏𝜏𝑖𝑖}𝑖𝑖=1ℬ , 
we can have

CVaR𝛼𝛼 𝜃𝜃𝑇𝑇meta − CVaR𝛼𝛼 𝜃𝜃∗ ≤ 𝑑𝑑𝜏𝜏 ∥ 𝜃𝜃𝑇𝑇meta − 𝜃𝜃∗ ∥

+
𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼∗

1 − 𝛼𝛼
ℙ 𝒯𝒯1 − ℙ 𝒯𝒯2 ,

For sufficiently large 𝑇𝑇, the first term can be bounded by a small number due to the convergence, 
and the second term vanishes.



Generalization Bound

 Theorem 3 (Generalization Bound in the Tail Risk Cases).  

Given a collection of task samples {𝜏𝜏𝑖𝑖}𝑖𝑖=1ℬ and corresponding meta datasets, we can derive the 
following generalization bound in the presence of tail risk: 

𝑉𝑉 𝜃𝜃∗ ≤ �𝑉𝑉 𝜃𝜃∗ +
2 𝛼𝛼

1 − 𝛼𝛼 ℒmax
2 + 𝕍𝕍𝜏𝜏𝑖𝑖∼𝑝𝑝𝛼𝛼 𝜏𝜏 ℓ 𝔇𝔇𝜏𝜏𝑖𝑖

𝑄𝑄 ,𝔇𝔇𝜏𝜏𝑖𝑖
𝑆𝑆 ;𝜃𝜃∗ ln 1

𝜖𝜖
ℬ

+
1

3 1 − 𝛼𝛼
ℒmax
ℬ

2ln
1
𝜖𝜖

+ 3𝛼𝛼ℬ ,

where the inequality holds with probability at least 1 − 𝜖𝜖 and 𝜖𝜖 ∈ 0,1 , 𝕍𝕍 ⋅ denotes the variance 
operation, and ℒmax is from the Assumption 1.



Practical Enhancements

KDE can handle arbitrary complex distributions compared to crude Monte Carlo (MC) methods 

𝐹𝐹ℓ−KDE 𝑙𝑙;𝜃𝜃 = �
−∞

𝑙𝑙 1
ℬℎℓ

�
𝑖𝑖=1

ℬ

𝐾𝐾
𝑡𝑡 − ℓ 𝔇𝔇𝜏𝜏𝑖𝑖

𝑄𝑄 ,𝔇𝔇𝜏𝜏𝑖𝑖
𝑆𝑆 ;𝜃𝜃

ℎℓ
𝑑𝑑𝑡𝑡,

 Theorem 4.  Let 𝐹𝐹ℓ−KDE
−1 𝛼𝛼;𝜃𝜃 = VaR𝛼𝛼

KDE ℓ 𝒯𝒯,𝜃𝜃 and 𝐹𝐹ℓ−1 𝛼𝛼;𝜃𝜃 = VaR𝛼𝛼 ℓ 𝒯𝒯,𝜃𝜃 . Suppose 
that 𝐾𝐾 𝑥𝑥 is lower bounded by a constant, ∀𝑥𝑥. For any 𝜖𝜖 > 0, with probability at least 1 − 𝜖𝜖, we 
can have the following bound: sup

𝜃𝜃∈Θ
𝐹𝐹ℓ−KDE
−1 𝛼𝛼;𝜃𝜃 − 𝐹𝐹ℓ−1 𝛼𝛼;𝜃𝜃 ≤ 𝒪𝒪 ℎℓ

ℬ∗logℬ
.

 Remark 1. The crude Monte Carlo used in  typically incurs an error of approximately 𝒪𝒪 1
ℬ

in 

estimating quantiles . In contrast, that of KDE is no more than 𝒪𝒪 ℎℓ
ℬ∗logℬ

from Theorem 4.



Empirical Findings



Benchmarks & Baselines
 Benchmarks.

 Baselines. MAML mainly works as the base meta learner, and we consider vanilla MAML , 
TR-MAML , DRO-MAML  and DR-MAML.  

 Evaluations. Expected/empirical risk minimization (Average), worst-case risk minimization 
(Worst), and tail risk minimization (CVaR𝛼𝛼).



Sinusoid Regression

 Problem Setup. The goal of the sinusoid regression  is to quickly fit an underlying function 
𝑓𝑓 𝑥𝑥 = 𝐴𝐴sin 𝑥𝑥 − 𝐵𝐵 from 𝐾𝐾 randomly sampled data points, and tasks are specified by 𝐴𝐴,𝐵𝐵 . 

 Result Analysis. (1) DR-MAML+ consistently outperforms all baselines across average and 
CVaR𝛼𝛼 indicators in the 5-shot case. DR-MAML+ exhibits more robustness in challenging task 
distributions, e.g., 5-shot case. 

(2) The standard error associated with our method is significantly smaller than others, 
underscoring the stability of DR-MAML+.



System Identification

 Problem Setup. The system identification corresponds to learning a dynamics model from a 
few collected transitions in physics systems.

 Result Analysis. (1) There is no significant difference between 10-shot and 20-shot cases. 
DR-MAML+ dominates the performance across all indicators in both cases. 

(2) TR-MAML behaves well in the worst-case but sacrifices too much average performance.

(3) DR-MAML+ exhibits an advantage over DR-MAML regarding CVaR𝛼𝛼 .



Few-Shot Image Classification
 Problem Setup. The task is a 5-way 1-shot classification problem. And 64 classes are selected 

for constructing meta-training tasks, with the remaining 32 classes for meta-testing.

 Result Analysis. (1) Methods within a two-stage distributionally robust strategy, namely DR-
MAML and DR-MAML+, show superiority to others across all indicators in both training and 
testing scenarios.

(2) DR-MAML+ and DR-MAML are comparable in most scenarios, and we attribute this to the 
small batch size in training, which weakens KDE’ quantile approximation advantage.



Meta Reinforcement Learning
 Problem Setup. Take 2-D point robot navigation as the benchmark. The goal is to reach the 

target destination with the help of a few exploration transitions for fast adaptation.

 Result Analysis. (1) DR-MAML+ benefits from a more reliable quantile estimate and achieves 
superior performance.

(2) The application of distributional robustness to reinforcement learning yields improvements 
in returns.



Extensions on Large Models

 Benchmarks. Tiered-ImageNet, ImageNetA, ImageNetSketch
 Baselines. CLIP, MaPLe, DR-MaPLe

 Result Analysis. (1) DR-MaPLe and DR-MaPLe+ consistently outperform baselines across both 
average and CVaR𝛼𝛼 indicators in 5-way 1-shot cases, demonstrating the advantage of the two-
stage strategy in enhancing the robustness of few-shot learning

(2) DR-MaPLe+ achieves better results as KDE quantiles are more accurate with large batch sizes. 
These results examine the scalability and compatibility of our method on large models..



Assessment of Quantile Estimators 

The VaR𝛼𝛼 approximation error decreases with more tasks.

The KDE produces more accurate estimates with a sharper decreasing trend. 

The above well verifies the conclusion in Theorem 3.



Other Investigations

 Evaluation with Other Robust Meta Learners  Sensitivity Analysis to Confidence Level



Conclusion



Technical Comparison

• DRO-MAML [5] includes the uncertainty set 𝒬𝒬 for robust fast adaptation, there exists no theoretical 
analysis.

• TR-MAML [4] only focuses on the worst-case, which considers a bit extreme and rarely occurred 
cases.

• DR-MAML [3] lacks generalization capability and convergence rate analysis w.r.t. the meta learner.
• DR-MAML+ is a more specific instantiation of that in DR-MAML.



Conclusion

• Proposes to understand the two-stage distributionally robust strategy 
from optimization processes. 

• Defines the convergence solution, and derives the generalization bound 
in the presence of tail task risk.

• Extensive evaluations demonstrate the significance of our proposal and 
its scalability to multimodal large models in boosting robustness.
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Thanks for your attention           .
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