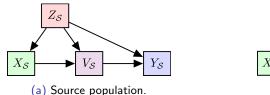
Covariate Shift Corrected Conditional Randomization Test

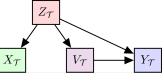
Bowen Xu, Yiwen Huang, Chuan Hong, Shuangning Li, Molei Liu

Neural Information Processing System 2024

November 12, 2024

Motivation





(b) Target population.

Figure: Possible differences between the source and the target populations.

• Conditional Independence Test:

• $H_0: X \perp \!\!\!\perp Y \mid Z$

Covariate Shift Issue

- Difference between source and target population
- Current Approach: Importance Sampling

• Our Approach:

- Novel test within model-X framework
- Incorporate density ratio for valid test procedure

Methodology And Key Ideas

Counterfeit Sampling

For each datapoint (X_i, Y_i, Z_i), counterfeits (X^(t)_i, Y_i, Z_i) are sampled from the distribution X^(t)_i ∼ p_T(X | Z).

Scoring and Labeling

• A label *l_i* is assigned to each data point based on its score among all the counterfeit scores through some scoring function

• Uniformity Testing

• Calculate the weighted sum of scores $W_{\ell} = \sum_{i=1}^{n} w_i \cdot \mathcal{I}\{\ell_i = \ell\}$ with w_i as the density ratio, and the test statistic $U_{n,L} = \sum_{l=1}^{L} (W_{\ell} - \frac{n}{L})^2$

Theorem (Valid Tests)

Under conventional assumptions, assume that the null hypothesis of $X \perp \!\!\!\perp Y \mid Z$ holds in the target population, then

$$\lim_{n \to \infty} \mathbb{P}[\mathsf{Algorithm rejects}] = \alpha$$

(1)

Power Enhancement

Variance Reduction

• We define \widehat{W}_ℓ with control variate a and parameter $\widehat{\gamma}_\ell$

$$\widetilde{W}_{\ell} = \sum_{j=1}^{n} w_j \left[\mathcal{I}\{\ell_i = \ell\} - \widehat{\gamma}_{\ell} \cdot a(X_i, Y_i, Z_i) \right] + n \widehat{\gamma}_{\ell} \mathcal{E}[a(X, Y, Z)]$$

• For arbitrary *a*, we obtain $\widehat{\gamma}_{\ell}$ by

$$\gamma_{\ell} = \frac{Cov[w_j \mathcal{I}[\ell_j = \ell], w_j a(X_j, Z_j, V_j)]}{Var[w_j a(X_j, Z_j, V_j)]}$$
(2)

Theorem (Variance Reduction)

Let W_1 be the statistics computed in line 10 in Algorithm 2, and W_1 be the statistics computed in Algorithm 2. Under conventional assumptions,

$$\limsup_{n \to \infty} \left(\frac{Var[\widetilde{W}_{\ell}]}{Var[W_{\ell}]} \right) \le 1.$$
(3)

Simulation Results

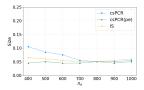


Figure: Comparison of Type-I error control across three methods.

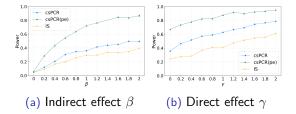


Figure: Comparison of Power between different methods

Thank you!