

Robust group and simultaneous inferences for high-dimensional single index model

Weichao Yang $^{\texttt{*1}}$, Hongwei Shi $^{\texttt{*1}}$, Xu Guo $^{\boxtimes 1}$, Changliang Zou 2

¹Beijing Normal University ²Nankai University *contribute equally \mathbb{B} corresponding author

Article link: https://neurips.cc/virtual/2024/poster/95500

Introduction

Consider the following general high-dimensional single index model (SIM):

$$
Y = g(\beta^\top X, \epsilon) \quad \text{with} \quad \epsilon \perp X.
$$

- The link function $g(\cdot)$ is unknown.
- $\beta=(\beta_1,\ldots,\beta_p)^\top\in\mathbb{R}^p$, and p can be much larger than sample size $n.$
- This model covers linear models, generalized linear models and classical SIM.

Introduction

We are interested in the following problems:

Group inference problem

 $\mathbb{H}_{0,G}$: $\beta_i = 0$ for all $j \in \mathcal{G}$ versus $\mathbb{H}_{1,G}$: $\beta_j \neq 0$ for some $j \in \mathcal{G}$.

Where G is a prespecified subset of $\{1, 2, ..., p\}$ with $p_0 = |\mathcal{G}|$.

Simultaneous inference problem

$$
\mathbb{H}_{0j} : \beta_j = 0 \quad \text{versus} \quad \mathbb{H}_{1j} : \beta_j \neq 0 \quad \text{for } 1 \leq j \leq p.
$$

Applications: for example, in genome-wide association studies:

- Variant sets analysis.
- Identifying specific genes.

Our contributions

- A high-dimensional robust inference framework.
- Extension of the rank-LASSO procedure in [Rejchel and Bogdan \(2020\)](#page-12-0).
- Asymptotically honest group inference procedure.
- Multiple testing procedure controlling false discovery rate (FDR).

Robust inference framework

Consider the pseudo-linear model:

$$
h(Y) = \beta_h^{\top} X + e.
$$

- \bullet $h(\cdot)$ is a transformation function.
- $\beta_h = (\beta_{h1}, \ldots, \beta_{hp})^\top.$
- The error term e satisfies $E(eX) = 0$.
- Under linear condition, β_h is proportional to β .
- We can recast the general SIM into a pseudo-linear model.

Robust inference framework

Problems aforementioned can be transformed as:

Group inference problem

 $\mathbb{H}'_{0,\mathcal{G}}: \beta_{hj}=0\ \ \text{for all}\ \ j\in\mathcal{G}\quad \text{versus}\quad \mathbb{H}'_{1,\mathcal{G}}: \beta_{hj}\neq 0\ \ \text{for some}\ j\in\mathcal{G}.$

Simultaneous inference problem

$$
\mathbb{H}_{0j}' : \beta_{hj} = 0 \quad \text{versus} \quad \mathbb{H}_{1j}' : \beta_{hj} \neq 0 \quad \text{for} \ 1 \leq j \leq p.
$$

For robust consideration, we consider the distribution transformation of Y, denote as $F(Y)$.

Group inference procedure

For each individual \mathbb{H}_{0j}^\prime : $\beta_{hj}=0$, define the standardized test statistic

$$
\widetilde{T}_{nj} = \frac{1}{\hat{\sigma}_j \sqrt{n}} \sum_{i=1}^n \left\{ F_n(Y_i) - 1/2 - Z_{ij}^\top \hat{\gamma}_j \right\} (X_{ij} - Z_{ij}^\top \hat{\theta}_j),
$$

- $F_n(Y_i) = n^{-1} \sum_{j=1}^n I(Y_j \leq Y_i)$ and $\hat{\sigma}_j^2$ is the estimator of variance.
- $\hat{\gamma}_j$ is subvector of $\hat{\beta}_h$ without $\hat{\beta}_{hj},\,p_{\lambda_Y}(\cdot)$ is the penalty function and

$$
\hat{\beta}_h = \arg \min_{\beta_h \in \mathbb{R}^p} (2n)^{-1} \sum_{i=1}^n \left\{ F_n(Y_i) - 1/2 - X_i^{\top} \beta_h \right\}^2 + \sum_{l=1}^p p_{\lambda_Y}(|\beta_{hl}|).
$$

 Z_{ij} is subvector of X_i without X_{ij} , $p_{\lambda_X}(\cdot)$ is the penalty function and

$$
\hat{\theta}_j = \arg \min_{\theta_j \in \mathbb{R}^{p-1}} \frac{1}{2n} \sum_{i=1}^n (X_{ij} - Z_{ij}^\top \theta_j)^2 + \sum_{l=1}^{p-1} p_{\lambda_X}(|\theta_{jl}|),
$$

Group inference procedure

For group inference problem, we consider the maximum type test statistic. That is,

$$
M_{n,\mathcal{G}} = \max_{j \in \mathcal{G}} \widetilde{T}_{nj}^2.
$$

We can reject the null hypothesis $\mathbb{H}_{0,G}$ at the significant level α if and only if

 $M_{n,G} \geq c_G(\alpha),$

where $c_G(\alpha) = 2 \log p_0 - \log \log p_0 + q_\alpha$ and

$$
q_{\alpha} = -\log(\pi) - 2\log\log(1 - \alpha)^{-1}.
$$

Simultaneous inference procedure

Define $\mathcal{H}_0 = \{j : \beta_j = 0, j = 1, \ldots, p\}$. At a given threshold level $t > 0$, \mathbb{H}_{0j} is rejected if $|\widetilde{T}_{ni}| \geq t$. Accordingly, the false discovery proportion (FDP) and FDR are

$$
\text{FDP}(t) = \frac{\sum_{j \in \mathcal{H}_0} I(|\widetilde{T}_{nj}| \ge t)}{\max\{\sum_{j=1}^p I(|\widetilde{T}_{nj}| \ge t), 1\}}, \quad \text{FDR}(t) = \mathbb{E}\{\text{FDP}(t)\}.
$$

As \mathcal{H}_0 is unknown, we use $pG(t)$ to approximate $\sum_{j\in\mathcal{H}_0}I(|T_{nj}|\geq t)$, where $G(t) = 2 - 2\Phi(t)$.

Simultaneous inference procedure

In summary, we have the following procedure controlling the FDR and FDP at a pre-specified level $0 < \alpha < 1$:

 $\textbf{1}$ Let $b_p =$ √ $2\log p - \log \log p$ and define

$$
\hat{t} = \inf \bigg\{ 0 \le t \le b_p : \frac{pG(t)}{\max \big\{ \sum_{j=1}^p I\big(|\widetilde{T}_{nj}| \ge t\big), 1 \big\}} \le \alpha \bigg\}.
$$

 2 If \hat{t} does not exist, then let $\hat{t}=\sqrt{2\log p}.$ We reject \mathbb{H}_{0j} whenever $|\widetilde{T}_j|\geq \hat{t}.$

Application to Bacillus Subtilis dataset

Description of the dataset

- $n = 71$ observations of strains of Bacillus Subtilis.
- $p = 300$ covariates, measuring the log-expression levels of 300 selected genes.
- The response variable is logarithm of the riboflavin production rate.

We are interested in

- Detect which genes are associated with riboflavin production rate.
	- ▶ 10 significant genes with the FDR level of 0.1, denote as G_1 .
	- ▶ 15 significant genes with the FDR level of 0.2, denote as \mathcal{G}_2 .
- Test whether there exist other significant genes in \mathcal{G}^c_1 or \mathcal{G}^c_2 .
	- ▶ P-values correspond to \mathcal{G}_1^c and \mathcal{G}_2^c are 0.727 and 0.937.
	- \blacktriangleright No significant gene in \mathcal{G}_1^c and \mathcal{G}_2^c .

Thanks for listening

Thank You!

References I

Rejchel, W. and M. Bogdan (2020). Rank-based lasso - efficient methods for high-dimensional robust model selection. Journal of Machine Learning Research 21 (244), 1–47.

