

Robust group and simultaneous inferences for high-dimensional single index model

Weichao Yang^{*1}, Hongwei Shi^{*1}, Xu Guo^{⊠1}, Changliang Zou²

 $^1\textsc{Beijing}$ Normal University $^2\textsc{Nankai}$ University *contribute equally $^\boxtimes\textsc{corresponding}$ author

Article link: https://neurips.cc/virtual/2024/poster/95500

Introduction

Consider the following general high-dimensional single index model (SIM):

$$Y = g(\beta^{\top}X, \epsilon)$$
 with $\epsilon \perp X$.

- The link function $g(\cdot)$ is unknown.
- $\beta = (\beta_1, \dots, \beta_p)^\top \in \mathbb{R}^p$, and p can be much larger than sample size n.
- This model covers linear models, generalized linear models and classical SIM.

Introduction

We are interested in the following problems:

• Group inference problem

 $\mathbb{H}_{0,\mathcal{G}}:\beta_j=0 \ \text{for all} \ j\in\mathcal{G} \quad \text{versus} \quad \mathbb{H}_{1,\mathcal{G}}:\beta_j\neq 0 \ \text{for some} \ j\in\mathcal{G}.$

Where \mathcal{G} is a prespecified subset of $\{1, 2, \dots, p\}$ with $p_0 = |\mathcal{G}|$.

• Simultaneous inference problem

$$\mathbb{H}_{0j}: \beta_j = 0$$
 versus $\mathbb{H}_{1j}: \beta_j \neq 0$ for $1 \leq j \leq p$.

Applications: for example, in genome-wide association studies:

- Variant sets analysis.
- Identifying specific genes.

Our contributions

- A high-dimensional robust inference framework.
- Extension of the rank-LASSO procedure in Rejchel and Bogdan (2020).
- Asymptotically honest group inference procedure.
- Multiple testing procedure controlling false discovery rate (FDR).

Robust inference framework

Consider the pseudo-linear model:

$$h(Y) = \beta_h^\top X + e.$$

- $h(\cdot)$ is a transformation function.
- $\beta_h = (\beta_{h1}, \dots, \beta_{hp})^\top$.
- The error term e satisfies E(eX) = 0.
- Under linear condition, β_h is proportional to β .
- We can recast the general SIM into a pseudo-linear model.

Robust inference framework

Problems aforementioned can be transformed as:

• Group inference problem

 $\mathbb{H}_{0,\mathcal{G}}':\beta_{hj}=0 \ \text{ for all } j\in \mathcal{G} \quad \text{versus} \quad \mathbb{H}_{1,\mathcal{G}}':\beta_{hj}\neq 0 \ \text{ for some } j\in \mathcal{G}.$

• Simultaneous inference problem

$$\mathbb{H}_{0j}': \beta_{hj} = 0 \quad \text{versus} \quad \mathbb{H}_{1j}': \beta_{hj} \neq 0 \quad \text{for } 1 \leq j \leq p.$$

For robust consideration, we consider the distribution transformation of Y, denote as F(Y).

Group inference procedure

For each individual $\mathbb{H}'_{0j}: \beta_{hj} = 0$, define the standardized test statistic

$$\widetilde{T}_{nj} = \frac{1}{\hat{\sigma}_j \sqrt{n}} \sum_{i=1}^n \left\{ F_n(Y_i) - 1/2 - Z_{ij}^\top \hat{\gamma}_j \right\} (X_{ij} - Z_{ij}^\top \hat{\theta}_j)$$

- $F_n(Y_i) = n^{-1} \sum_{j=1}^n I(Y_j \le Y_i)$ and $\hat{\sigma}_j^2$ is the estimator of variance.
- $\hat{\gamma}_j$ is subvector of $\hat{\beta}_h$ without $\hat{\beta}_{hj}$, $p_{\lambda_Y}(\cdot)$ is the penalty function and

$$\hat{\beta}_h = \arg\min_{\beta_h \in \mathbb{R}^p} (2n)^{-1} \sum_{i=1}^n \{F_n(Y_i) - 1/2 - X_i^\top \beta_h\}^2 + \sum_{l=1}^p p_{\lambda_Y}(|\beta_{hl}|).$$

• Z_{ij} is subvector of X_i without X_{ij} , $p_{\lambda_X}(\cdot)$ is the penalty function and

$$\hat{\theta}_j = \arg\min_{\theta_j \in \mathbb{R}^{p-1}} \frac{1}{2n} \sum_{i=1}^n \left(X_{ij} - Z_{ij}^\top \theta_j \right)^2 + \sum_{l=1}^{p-1} p_{\lambda_X}(|\theta_{jl}|),$$

Group inference procedure

For group inference problem, we consider the maximum type test statistic. That is,

$$M_{n,\mathcal{G}} = \max_{j \in \mathcal{G}} \widetilde{T}_{nj}^2.$$

We can reject the null hypothesis $\mathbb{H}_{0,\mathcal{G}}$ at the significant level α if and only if

 $M_{n,\mathcal{G}} \ge c_{\mathcal{G}}(\alpha),$

where $c_{\mathcal{G}}(\alpha) = 2\log p_0 - \log\log p_0 + q_{\alpha}$ and

$$q_{\alpha} = -\log(\pi) - 2\log\log(1-\alpha)^{-1}.$$

Simultaneous inference procedure

Define $\mathcal{H}_0 = \{j : \beta_j = 0, j = 1, \dots, p\}$. At a given threshold level t > 0, \mathbb{H}_{0j} is rejected if $|\widetilde{T}_{nj}| \ge t$. Accordingly, the false discovery proportion (FDP) and FDR are

$$FDP(t) = \frac{\sum_{j \in \mathcal{H}_0} I(|\widetilde{T}_{nj}| \ge t)}{\max\{\sum_{j=1}^p I(|\widetilde{T}_{nj}| \ge t), 1\}}, \qquad FDR(t) = \mathbb{E}\{FDP(t)\}.$$

As \mathcal{H}_0 is unknown, we use pG(t) to approximate $\sum_{j \in \mathcal{H}_0} I(|\widetilde{T}_{nj}| \ge t)$, where $G(t) = 2 - 2\Phi(t)$.

Simultaneous inference procedure

In summary, we have the following procedure controlling the FDR and FDP at a pre-specified level $0<\alpha<1$:

• Let $b_p = \sqrt{2 \log p - \log \log p}$ and define

$$\hat{t} = \inf \left\{ 0 \le t \le b_p : \frac{pG(t)}{\max\left\{\sum_{j=1}^p I\left(|\widetilde{T}_{nj}| \ge t\right), 1\right\}} \le \alpha \right\}.$$

2 If \hat{t} does not exist, then let $\hat{t} = \sqrt{2 \log p}$. We reject \mathbb{H}_{0j} whenever $|\widetilde{T}_j| \ge \hat{t}$.

Application to Bacillus Subtilis dataset

Description of the dataset

- n = 71 observations of strains of Bacillus Subtilis.
- p = 300 covariates, measuring the log-expression levels of 300 selected genes.
- The response variable is logarithm of the riboflavin production rate.

We are interested in

- Detect which genes are associated with riboflavin production rate.
 - ▶ 10 significant genes with the FDR level of 0.1, denote as G_1 .
 - ▶ 15 significant genes with the FDR level of 0.2, denote as G_2 .
- Test whether there exist other significant genes in \mathcal{G}_1^c or \mathcal{G}_2^c .
 - *P*-values correspond to \mathcal{G}_1^c and \mathcal{G}_2^c are 0.727 and 0.937.
 - No significant gene in \mathcal{G}_1^c and \mathcal{G}_2^c .

Thanks for listening

References I

Rejchel, W. and M. Bogdan (2020). Rank-based lasso - efficient methods for high-dimensional robust model selection. *Journal of Machine Learning Research 21*(244), 1–47.

