

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Unveiling and Mitigating Backdoor Vulnerabilities based on Unlearning Weight Changes and Backdoor Activeness

Weilin Lin¹, Li Liu¹*, Shaokui Wei², Jianze Li^{3,4,2}, Hui Xiong¹

¹The Hong Kong University of Science and Technology (Guangzhou)
²The Chinese University of Hong Kong, Shenzhen
³Shenzhen International Center for Industrial and Applied Mathematics
⁴Shenzhen Research Institute of Big Data

- Background
- Observations
- Framework
- Experiment
- Conclusion

Background

Backdoor Attack

Backdoor Defense - Post-training Defense

*Backdoored Model == Infected DNN

Goal:

- 1. Maintain clean functionality.
 - Inputs without trigger. \rightarrow Correct label.
 - High *clean accuracy* (ACC).
- 2. Eliminate backdoored effect.
 - Inputs with trigger. $X \rightarrow$ Target label.
 - Low attack success rate (ASR).

Li Y, Jiang Y, Li Z, et al. Backdoor learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(1): 5-22.

Background

Unlearning for the Backdoored Model

Model Unlearning

 $\max_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},y)\in\mathcal{D}} \left[\mathcal{L}(f(\boldsymbol{x};\boldsymbol{\theta}),y) \right]$

- Clean Unlearning
 - Unlearn on clean dataset.
 - Accessible for defender.
 - ACC↓, ASR≈
- Poison Unlearning
 - Unlearn on poison dataset.
 - Inaccessible for defender.
 - ACC≈, ASR↓

*ASR: Attack Success Rate

Observations

- [Unlearning Weight Changes] Observation 1 inspires us to zero out the high-NWC neuron weights for backdoor mitigation.
- [Backdoor Activeness] Observation 2 inspires us to suppress the gradient norm during the learning process if we want to recover it to a clean model.

Framework

Two-Stage Backdoor Defense (TSBD)

- Stage 1: to mitigate the backdoor effect with acceptable clean-accuracy sacrificed.
- Stage 2: to repair the reinitialized model and avoid recovering the backdoor effect again.

Experiment

Main Results

Backdoor	No Defense			FT			FP [37]			NAD [43]			NC [20]		
Attacks	ACC ↑	ASR↓	DER \uparrow	ACC ↑	ASR↓	DER ↑	ACC ↑	ASR↓	DER ↑	ACC ↑	ASR↓	DER \uparrow	ACC ↑	ASR↓	DER ↑
BadNets [8]	91.32	95.03	-	89.96	1.48	96.10	91.31	57.13	68.95	89.87	2.14	95.72	89.05	1.27	95.75
Blended [25]	93.47	99.92	-	92.78	96.11	51.56	93.17	99.26	50.18	92.17	97.69	50.47	93.47	99.92	50.00
Input-aware [23]	90.67	98.26	-	93.12	1.72	98.27	91.74	0.04	99.11	93.18	1.68	98.29	92.61	0.76	98.75
LF [49]	93.19	99.28	-	92.37	78.44	60.01	92.90	98.97	50.01	92.37	47.83	75.31	91.62	1.41	98.15
SIG [26]	84.48	98.27	-	90.80	2.37	97.95	89.10	26.20	86.03	90.02	10.66	93.81	84.48	98.27	50.00
SSBA [9]	92.88	97.86	-	92.14	74.79	61.16	92.54	83.50	57.01	91.91	77.40	59.74	90.99	0.58	97.69
Trojan [50]	93.42	100.00	-	92.42	5.99	96.51	92.46	71.17	63.94	91.88	3.73	97.36	91.76	8.22	95.06
WaNet [24]	91.25	89.73	-	93.48	17.10	86.32	91.46	1.09	94.32	93.17	22.98	83.38	91.80	7.53	91.10
Average	91.34	97.29	-	92.13	34.75	80.98	91.84	54.67	71.19	91.82	33.01	81.76	90.72	27.24	84.56
Backdoor	ANP [41]			CLP [38]			i-BAU [21]			RNP [22]			TSBD (Ours)		
Attacks	ACC ↑	$ASR\downarrow$	DER \uparrow	ACC ↑	ASR↓	DER ↑	ACC ↑	ASR↓	DER \uparrow	ACC ↑	$ASR\downarrow$	DER \uparrow	ACC ↑	ASR↓	DER \uparrow
BadNets [8]	90.94	5.91	94.37	90.06	77.50	58.14	89.15	1.21	95.83	89.81	24.97	84.28	90.72	1.31	96.53
Blended [25]	93.00	84.90	57.28	91.32	99.74	49.01	87.00	50.53	71.46	88.76	79.74	57.73	91.61	2.61	97.73
Input-aware [23]	91.04	1.32	98.47	90.30	2.17	97.86	89.17	$\overline{27.08}$	84.84	90.52	1.84	98.13	93.06	1.94	98.16
LF [49]	92.83	54.99	71.96	92.84	99.18	49.88	84.36	44.96	72.75	88.43	7.02	93.75	91.20	2.64	97.32
SIG [26]	83.36	36.43	80.36	83.80	98.91	49.66	85.67	3.68	97.29	84.48	98.27	50.00	90.41	1.27	98.50
SSBA [9]	92.67	60.16	68.74	91.38	68.13	64.11	87.67	3.97	94.34	88.60	17.89	87.84	91.57	1.66	97.44
Trojan [50]	92.97	46.27	76.64	92.98	100.00	49.78	90.37	2.91	97.02	90.89	3.59	96.94	91.76	5.06	96.64
WaNet [24]	91.32	2.22	93.76	81.91	78.42	50.99	89.49	5.21	91.38	90.43	0.96	93.98	93.26	0.88	94.43
Average	91.02	36.53	80.20	89.32	78.01	58.68	87.86	17.44	88.11	88.99	29.28	82.83	91.70	2.18	97.09

Table 1: Comparison with the SOTA defenses on CIFAR-10 dataset with PreAct-ResNet18 (%).

Defense Effectiveness Rating: $DER = [max(0, \Delta ASR) - max(0, \Delta ACC) + 1]/2$

- TSBD performs the state-of-the-art (SOTA) on average.
 - Promising ACC (91.70%); Best ASR (2.18%) and DER (97.09%)

- Provide two novel insights.
 - The first to uncover the strong positive relationship between neuron weight changes in clean unlearning and poison unlearning.
 - Reveal the high backdoor activeness in the backdoored model during the learning process.
- TSBD is a promising defense method.
 - Considering both backdoor mitigation and clean-accuracy recovery.
- SOTA performance on average.
 - Highest DER, balancing well in ACC and ASR.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Unveiling and Mitigating Backdoor Vulnerabilities based on Unlearning Weight Changes and Backdoor Activeness

Thanks for listening

Presenter: Weilin Lin