Intrinsic Robustness of Prophet Inequality to Strategic Reward Signaling

Wei Tang¹, Haifeng Xu², Ruimin Zhang², Derek Zhu²

¹Chinese University of Hong Kong

²The University of Chicago

N boxes containing unknown rewards $X_i \sim H_i$

N boxes containing unknown rewards $X_i \sim H_i$

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$60, and the game ends **Continue**: discard \$60, game continues to next box

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$40, and the game ends **Continue**: discard \$40, game continues to next box

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$100, and the game ends **Continue**: discard \$100, game continues to next box

Goal: win as much reward as possible

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$100, and the game ends **Continue**: discard \$100, game continues to next box

Prophet Inequality

- Given N independent distributions: H_1, H_2, \ldots, H_N
- At step *i*, $X_i \sim H_i$ is revealed
- The searcher make irrevocable accept/reject decision for each X_i
- Goal: maximize the accepted value in expectation
- Benchmark: prophet's payoff $OPT = \mathbb{E}\{\max X_i\}$

Competitive Ratio = $\max_{I} \frac{\mathbb{E}_{randomness in I}[OPT(I)]}{\mathbb{E}_{randomness in I, ALG}[ALG(I)]}$

Theorem [Krengel, Sucheston, Garling '77]: There exist a strategy for the searcher such that $\mathbb{E}\{\text{reward}\} \ge \frac{1}{2} \mathbb{E}\{\max_{i} X_{i}\}$

Theorem [Samuel-Cahn '84], [Kleinberg Weinberg 12]: There exist fixed threshold policies for the searcher such that $\mathbb{E}\{\text{reward}\} \ge \frac{1}{2} \mathbb{E}\{\max_{i} X_{i}\}$

- Find threshold t such that $Pr(\exists i \text{ with } X_i \ge t) = 1/2$
- Pick the first element that exceeds *t*

• Also: any *t* between these two

Theorem [Krengel, Sucheston, Garling '77]: There exist a strategy for the searcher such that $\mathbb{E}\{\text{reward}\} \ge \frac{1}{2} \mathbb{E}\{\max_{i} X_{i}\}$

Theorem [Samuel-Cahn '84], [Kleinberg Weinberg 12]: There exist fixed threshold policies for the searcher such that $\mathbb{E}\{\text{reward}\} \ge \frac{1}{2} \mathbb{E}\{\max_{i} X_{i}\}$

- Find threshold *t* such that $Pr(\exists i \text{ with } X_i \ge t) = 1/2$
- Pick the first element that exceeds *t*

- Alternatively: $t = 1/2 \cdot OPT$
 - Also: any *t* between these two

Prophet Inequality with Strategic Reward Signaling

- Given N independent distributions: H_1, H_2, \ldots, H_N
 - Each H_i is associated with a strategic player *i*
- At step *i*, player *i* strategically disclose information about $X_i \sim H_i$
- The searcher make irrevocable accept/reject decision for each X_i
- Goal: maximize the accepted value in expectation
- Benchmark: prophet's payoff $OPT = \mathbb{E}\{\max X_i\}$

Robustness

Definition 1 (\alpha- robust stopping policy): A stopping policy p is α -robust if

- It achieves α -approximation to OPT when players are strategically signaling their rewards 1.
- 2. It remains a 1/2-approximation in the standard non-strategic setting.

$OPT = \mathbb{E}[\max_{i} X_{i}] \text{ where } X_{i} \sim H_{i}$

Player's Optimal Signaling Scheme

Proposition 1: Given a threshold stopping policy with threshold *T*, for each player *i*:

- If $T \leq \lambda_i$, then player i's optimal information revealing strategy is the no information strategy;
- If $T > \lambda_i$, then player i's optimal information revealing strategy is threshold signaling and determined by a cutoff t_i that satisfies

$$T = \mathbb{E}[X_i | X_i \ge t_i] =$$

That is, player *i*'s optimal signaling scheme sends one of two signals:

 $X_i \geq$

$$\int_{t_i}^{\infty} x dH_i(x)/(1 - H_i(t_i))$$

$$\geq t_i \text{ or } X_i < t_i$$

First Main Result

$T = 1/2 \cdot OPT$ is $\frac{1 - 1/e}{2}$ - robust, and this is tight among a class of thresholds.

- **Theorem 1:** For any distributions H_1, H_2, \ldots, H_N , a threshold stopping policy with threshold

Second Main Result

achieving 1/2-robustness for special distributions

 $T = \sum \mathbb{E}_{H_i} (X_i - T)^+$ is 1/2 - robust, and this is tight.

policy with threshold T that satisfies $2 \cdot T_{KW} \leq T \leq T_{SC}$ is 1/2 - robust

Theorem 2: For IID distributions $H_1 = H_2 = \cdots = H_N$, a threshold stopping policy with threshold

Theorem 3: If H_1, H_2, \ldots, H_N satisfy certain regularity assumptions, then a threshold stopping

Thank you!