Intrinsic Robustness of Prophet **Inequality to Strategic Reward Signaling**

Wei Tang¹, Haifeng Xu², Ruimin Zhang², Derek Zhu²

¹Chinese University of Hong Kong

²The University of Chicago

N boxes containing unknown rewards $X_i \sim H_i$

N boxes containing unknown rewards $X_i \sim H_i$

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$60, and the game ends Continue: discard \$60, game continues to next box

N boxes containing unknown rewards $X_i \sim H_i$

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$100, and the game ends Continue: discard \$100, game continues to next box

Goal: win as much reward as possible

N boxes containing unknown rewards $X_i \sim H_i$

Stop: win \$100, and the game ends Continue: discard \$100, game continues to next box

Prophet Inequality

- Given N independent distributions: H_1, H_2, \ldots, H_N
- At step $i, X_i \sim H_i$ is revealed *i*, X_i ∼ H_i
- The searcher make irrevocable accept/reject decision for each *Xi*
- Goal: maximize the accepted value in expectation
- Benchmark: prophet's payoff $OPT = \mathbb{E} \{ \max_i X_i \}$

Competitive Ratio = max *I* randomness in I [*OPT*(*I*)] randomness in I, ALG[*ALG*(*I*)]

i

Theorem [Krengel, Sucheston, Garling '77]: There exist a strategy for the searcher such that {reward} ≥ 1 $\sum_{i} \mathbb{E} \{ \max_{i}$

Theorem [Samuel-Cahn '84], [Kleinberg Weinberg 12]: There exist fixed threshold policies for the searcher such that {reward} ≥ 1 $\sum_{i} \mathbb{E} \{ \max_i$

- \bullet Find threshold t such that *t* such that $Pr(\exists i \text{ with } X_i \geq t) = 1/2$
- Pick the first element that exceeds *t*

• Also: any *t* between these two

Theorem [Krengel, Sucheston, Garling '77]: There exist a strategy for the searcher such that {reward} ≥ 1 $\sum_{i} \mathbb{E} \{ \max_{i}$

Theorem [Samuel-Cahn '84], [Kleinberg Weinberg 12]: There exist fixed threshold policies for the searcher such that {reward} ≥ 1 $\sum_{i} \mathbb{E} \{ \max_i$

- \bullet Find threshold t such that *t* such that $Pr(\exists i \text{ with } X_i \geq t) = 1/2$
- Pick the first element that exceeds *t*

- Alternatively: $t = 1/2 \cdot OPT$
- Also: any *t* between these two

Prophet Inequality with Strategic Reward Signaling

- Given N independent distributions: H_1, H_2, \ldots, H_N
	- Each H_i is associated with a strategic player *H_i* is associated with a strategic player *i*
- At step i , player i strategically disclose information about *i*, player *i* strategically disclose information about $X_i \sim H_i$
- The searcher make irrevocable accept/reject decision for each *Xi*
- Goal: maximize the accepted value in expectation
- Benchmark: prophet's payoff $OPT = \mathbb{E} \{ \max_i X_i \}$
- *i*

Robustness

Definition 1 (α **- robust stopping policy):** A stopping policy p is α -robust if

- 1. It achieves α -approximation to OPT when players are strategically signaling their rewards
- 2. It remains a 1/2-approximation in the standard non-strategic setting.

$OPT = E[\max X_i]$ where *i* X_i] where $X_i \sim H_i$

Player's Optimal Signaling Scheme

Proposition 1: Given a threshold stopping policy with threshold T, for each player *i*:

- If $T \leq \lambda_i$, then player *i*'s optimal information revealing strategy is the no information strategy; $T \leq \lambda_i$, then player *i*
- If $T > \lambda_i$, then player *i*'s optimal information revealing strategy is threshold signaling and determined by a cutoff t_i that satisfies $T > \lambda_i$, then player *i*

$$
T = \mathbb{E}[X_i | X_i \ge t_i] :
$$

That is, player *i*'s optimal signaling scheme sends one of two signals:

 $X_i \geq$

$$
]=\int_{t_i}^{\infty} x dH_i(x)/(1-H_i(t_i))
$$

$$
\geq t_i \text{ or } X_i < t_i
$$

First Main Result

Theorem 1: For any distributions $H_1, H_2, ..., H_N$, a threshold stopping policy with threshold \blacksquare $T = 1/2 \cdot OPT$ is $\frac{1}{2}$ - robust, and this is tight among a class of thresholds. 1 − 1/*e* 2

-
-

Second Main Result

achieving 1/2-robustness for special distributions

 $T = \sum E_{H_i}(X_i - T)^+$ is 1/2 - robust, and this is tight. *i*

policy with threshold T that satisfies $2 \cdot T_{KW} \leq T \leq T_{SC}$ is 1/2 - robust

Theorem 2: For IID distributions $H_1 = H_2 = \cdots = H_N$, a threshold stopping policy with threshold

Theorem 3: If $H_1, H_2, ..., H_N$ satisfy certain regularity assumptions, then a threshold stopping

Thank you!