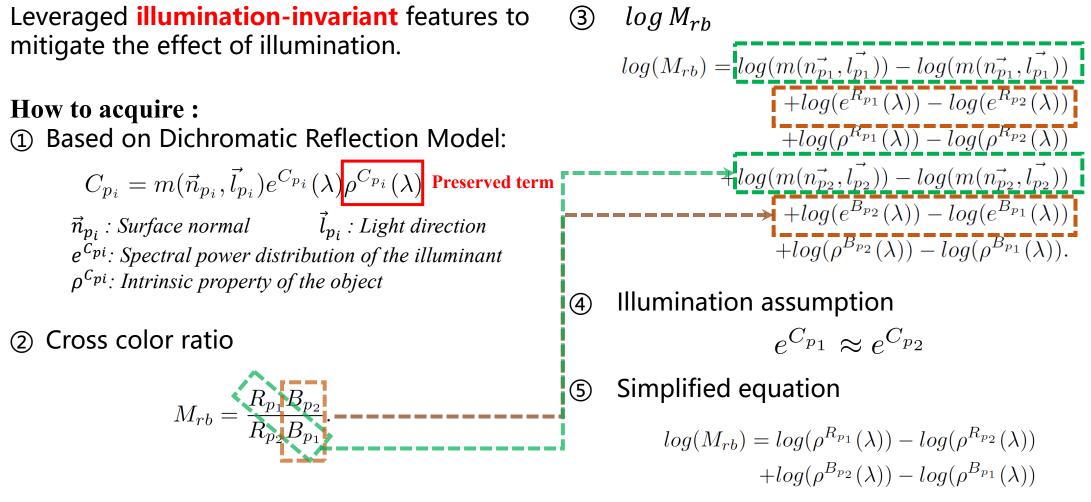


You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Mingbo Hong¹, Shen Cheng¹, Haibin Huang², Haoqiang Fan¹, Shuaicheng Liu³,

https://github.com/MingboHong/YOLA

¹Megvii Technology ²Kuaishou Technology ³University of Electronic Science and Technology of China



You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Motivation:

Ę

You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Cross color ratio

 $M_{rb} = \frac{R_{p_1} B_{p_2}}{R_{p_2} B_{p_1}}.$

Convolution operation

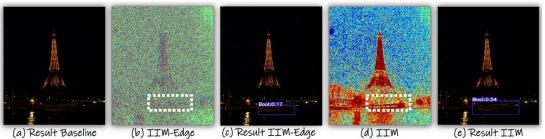
$$M_{rb} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \circledast I_r - \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \circledast I_b$$

$$(3) \quad log M_{rb} \\ log(M_{rb}) = log(m(n_{p_1}, l_{p_1})) - log(m(n_{p_1}, l_{p_1})) \\ + log(e^{R_{p_1}}(\lambda)) - log(e^{R_{p_2}}(\lambda)) \\ + log(\rho^{R_{p_1}}(\lambda)) - log(\rho^{R_{p_2}}(\lambda)) \\ + log(m(n_{p_2}, l_{p_2})) - log(m(n_{p_2}, l_{p_2})) \\ + log(e^{B_{p_2}}(\lambda)) - log(e^{B_{p_1}}(\lambda)) \\ + log(\rho^{B_{p_2}}(\lambda)) - log(\rho^{B_{p_1}}(\lambda)).$$

Subtraction

- **Same channel**: Eliminate the illumination term
- **Cross-channel** : Eliminate surface normal and light direction terms

Ę


You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Cross color ratio

 $M_{rb} = \frac{R_{p_1} B_{p_2}}{R_{p_2} B_{p_1}}.$

Convolution operation

$$M_{rb} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \circledast I_r - \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \circledast I_b$$

Why learnable kernel:

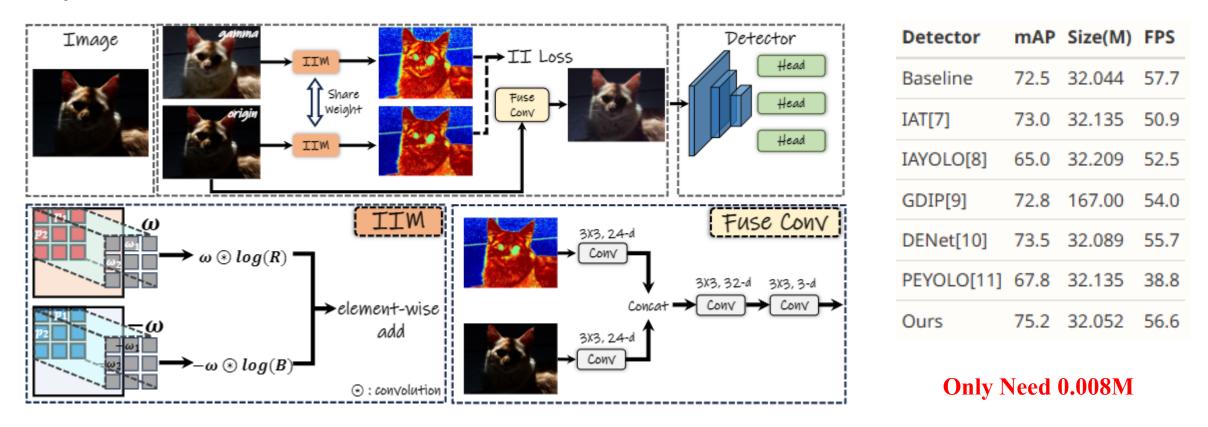
s.t.

Produce task-specific illumination invariant features for downstream tasks.

How to build a learnable kernel

$$f_{\mathcal{W}_i}(I) = \left[\begin{array}{c} \mathcal{W}_i \circledast \log(R) + (-\mathcal{W}_i) \circledast \log(B) \\ \mathcal{W}_i \circledast \log(R) + (-\mathcal{W}_i) \circledast \log(G) \\ \mathcal{W}_i \circledast \log(G) + (-\mathcal{W}_i) \circledast \log(B) \end{array} \right]$$

Subtraction


- **Same channel**: Eliminate the illumination term
- **Cross-channel** : Eliminate surface normal and light direction terms

$$\overline{\mathcal{W}_n} = \frac{1}{k^2} \sum_{i=1}^{k^2} w_i = 0$$
 (Zero mean constraint)

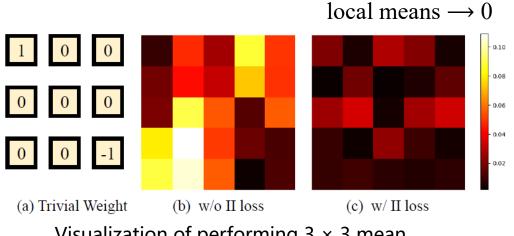
You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Pipeline

Ē

Ę

You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection


Uneven lighting Condition:

$$e^{C_{p_1}} \approx e^{C_{p_2}}$$

Illumination Invariant Loss

$$L = \begin{cases} \frac{1}{2} (f_{\mathcal{W}_i}(I) - f_{\mathcal{W}_i}(\sigma(I)))^2 & |f_{\mathcal{W}_i}(I) - f_{\mathcal{W}_i}(\sigma(I))| \le \beta \\ |f_{\mathcal{W}_i}(I) - f_{\mathcal{W}_i}(\sigma(I))| - \frac{1}{2}\beta, & \text{otherwise.} \end{cases}$$

II Loss is proposed to encourage consistency of outputs from IIM across images with different illuminations, preventing trivial solutions within the kernel implicitly.

Visualization of performing 3×3 mean filtering on the kernel weights

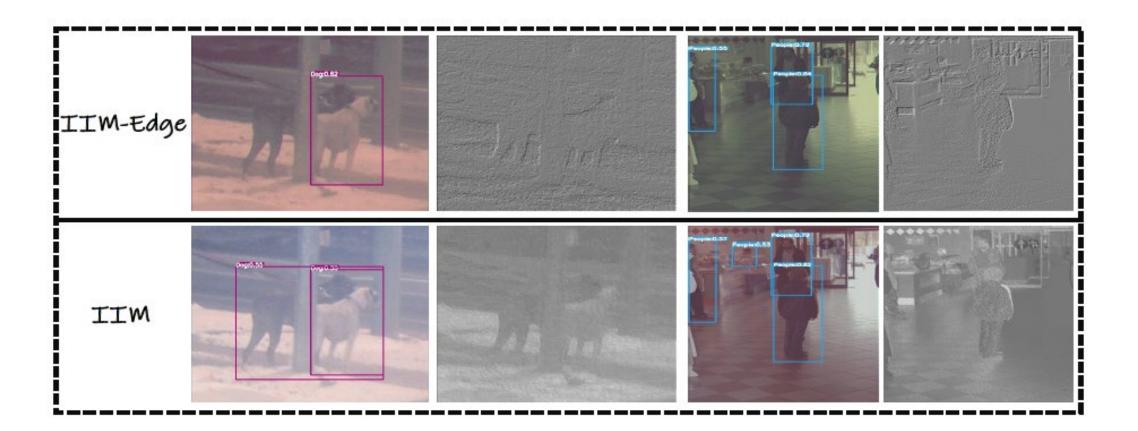
1)	Dataset	IIM	II-Loss	\mathcal{K}_s	YOLOv3	TOOD
2)				3	71.0	72.5
3)		 Image: A second s		3	71.1	74.8
4)	Exdark	 Image: A start of the start of	\checkmark	3	72.7	75.0
5)		 Image: A start of the start of		5	71.5	75.0
6)		 Image: A set of the set of the	\checkmark	5	72.7	75.2
7)				3	60.0	62.1
8)		 Image: A second s		3	61.0	66.9
9)	DarkFace	 Image: A start of the start of	\checkmark	3	61.5	67.4
10)		 Image: A start of the start of		5	60.2	65.8
11)		 Image: A set of the set of the	\checkmark	5	60.7	67.1

Ē

You Only Look Around: Learning Illumination Invariant Feature for Low-light Object Detection

Methods	YOLOv3		TOOD			Methods	YOLOv3		TOOD		
	recall	mAP ₅₀	recall	mAP ₅₀	Ι.		recall	mAP ₅₀	recall	mAP ₅₀	
Baseline	84.6	71.0	91.9	72.5		Baseline	77.9	60.0	81.5	62.1	
KIND [53]	83.3	69.4	92.1	72.6		KIND [53]	76.0	58.4	82.4	63.8	
SMG [46]	82.3	68.5	91.8	71.5		SMG [46]	69.3	48.9	77.1	55.8	
NeRCo [47]	83.4	68.5	91.8	71.8		NeRCo [47]	68.9	49.1	76.8	55.6	
DENet [36]	84.2	71.3	92.6	73.5		DENet [36]	77.7	60.0	84.1	66.2	
GDIP [53]	84.8	72.4	92.2	72.8		GDIP [53]	77.8	60.4	82.1	62.9	
IAT [53]	85.0	72.6	92.9	73.0		IAT [53]	77.6	59.8	82.1	62.0	
MAET [7]	85.1	72.5	92.5	74.3		MAET [7]	77.9	59.9	83.6	64.8	
YOLA-Naive	84.8	71.6	91.8	71.6	[``	YOLA-Naive	76.6	59.2	82.8	64.6	1
YOLA	86.1	72.7	93.8	75.2		YOLA	79.1	61.5	84.9	67.4	

Table 1: Quantitative comparisons of the ExDark dataset based on YOLOv3 and TOOD detectors.


Table 2: Quantitative comparisons of the UG^2 +DARK FACE dataset based on YOLOv3 and TOOD detectors.

Dataset	Method	AP ₅₀	AP_{75}	mAP		
well-lit	TOOD	59.0	45.3	41.7		
	+ YOLA	59.4	46.0	42.3		
over-light	TOOD	57.4	43.8	40.5		
	+ YOLA	58.3	44.6	41.2		
Table 4: Ablation study for YOLA on COCO 2017val.						

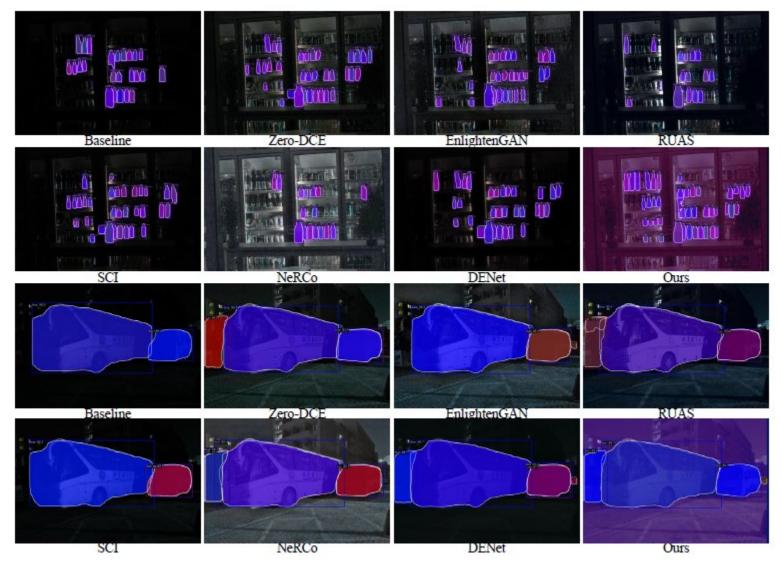

Method						
Size(M)	8.21	17.90	23.30	0.04	40	0.008

Table 5: Model size of different methods.

Ę

Conclusion

- We introduce YOLA, a novel framework for object detection in low-light conditions by leveraging illumination-invariant features.
- We design a novel Illumination-Invariant Module to extract illumination-invariant features without requiring additional paired datasets, and can be seamlessly integrated into existing object detection methods.
- We provide an in-depth analysis of the extracted illumination-invariant paradigm and propose a learning illumination-invariant paradigm.
- Our experiments show YOLA can significantly improve the detection accuracy of existing methods when dealing with low-light images.