

UC Berkeley

Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning

Wuyang Chen*, Jialin Song*, Pu Ren, Shashank Subramanian, Dmitriy Morozov, Michael W. Mahoney

Motivation

SciML is short of "labeled" data

1.7M snapshots in total across 4 benchmarks: *FNO*, *PDEBench*, *PDEArena*, *CFDBench* **Compared to** *Computer Vision*

- 14M images (256x256) from ImageNet
- **300M** images from *JFT-300M*

Generation/Collection of SciML data has high cost

Simulations

0.15s for one 512x512 N.S. snapshot (A100) \Rightarrow ~1.5 GPU days for 1M snapshots with temporal dynamics

Observations

ERA5: 14600 snapshots for 10 years

Success of Unsupervised pretraining in other domains

- NLP & CV: Large-scale unsupervised pretraining
 - With next/masked-token prediction; contrastive + masked-autoencoder
 - Fine-tune on downstream tasks
- SciML:
 - Multi-physics pretraining; Contrastive/Augmentations (e.g. Lie transform)
 - All happen in the **solution** space

Pipeline

Stage 1 & 2: Unsupervised Pretraining

Unlabeled PDE Data

$$\sum_{i,j=1}^{n} \frac{a_{ij}(x)u_{x_ix_j}}{u_{x_ix_j}} + \sum_{i=1}^{n} \frac{b_i(x)u_{x_i}}{u_{x_i}} + \frac{c(x)u}{u_{x_i}} = \frac{f(x)}{f(x)}$$

physical space: $x \in \mathbb{R}^n$, target solution: u

- Time-independent equations
 - PDE coefficients: a_{ij}, b_i, c
 - Forcing functions: f
 - Coordinates
- Time-dependent equations
 - \circ Initial snapshot: $u_0(x)$

Cheap generation, low simulation costs

Proxy Tasks

Blur

- Masked Autoencoder
 - \circ ~ Apply randomly sampled mask with various ratios
 - Model should predict the removed content
- Super-resolution
 - Apply Gaussian filter to the input
 - Model should recover the fine-scale data

Sensor/Resolution-invariant, improve robustness

Stage 1 & 2: Unsupervised Pretraining

Settings

- FNO for time-independent PDEs
 - <u>Pretrain</u>:
 - Encoder + Decoder
 - <u>Fine-tune</u>:
 - Encoder
 - o <u>Input</u>:

coefficients, source functions, coordinates

• FNO 3D/VideoMAE for time-dependent PDEs

- <u>Pretrain on VideoMAE</u>:
 Encoder + Decoder
 - Fine-tune on VideoMAE:
 - Encoder + Decoder
- <u>Input</u>:

0

snapshots with no temporal dynamics

Stage 3: In-Context Learning

For Out-of-Distribution Generalization

- No extra training costs
- Scalable to any number of demos

2 Input: Query input (x). Paired unlabeled PDE data (X) and solutions ($Y \in \mathbb{R}^{J \times H \times W \times T \times C_{out}}$) as J demos. Trained Neural Operator Model \mathcal{M} . TopK (k) demo solutions to aggregate.

- з $\hat{y} = \mathcal{M}(x)$
- 4 $\hat{Y} = \mathcal{M}(X)$

5
$$\hat{\boldsymbol{\delta}} = \hat{y}.\operatorname{reshape}(-1, 1, C_{out}) - \hat{Y}.\operatorname{reshape}(1, -1, C_{out})$$

6
$$\hat{\delta} = \operatorname{absolute}(\hat{\delta}).\operatorname{sum}(-1)$$

- τ index = $\operatorname{argsort}(\hat{\delta}, -1)[:, :, :, :k]$ > Spatial and temporal selection of demos similar to the query.
- s \hat{y}_{icl} = take_along_dim(Y.reshape(-1, C_{out}), index) \triangleright Shape: $H \times W \times T \times C_{out} \times k$. Spatial and temporal aggregation of solutions from similar demos.
- 9 Return: \hat{y}_{icl} .mean(-1)

 \triangleright Shape: $H \times W \times T \times C_{out}$

 \triangleright Shape: $J \times H \times W \times T \times C_{out}$

 \triangleright Shape: $H \times W \times T \times (J \cdot H \cdot W \cdot T) \times C_{out}$

Results: Unsupervised Pretraining

Results: Real-World Scientific Data

ERA5

ScalarFlow

Airfoil

Results: In-Context Learning

Physics Parameters	Poisson (diffusion)	Helmholtz (wave number)	Naiver Stokes (Reynolds number)
Pretraining	[1, 20]	[1, 20]	$\{100, 300, 500, 800, 1000\}$
Training (or Fine-tuning)	[5, 15]	[5, 15]	300
Out-of-Distribution Testing	[15, 50]	[15, 20]	10000

Thank you