A Concept-Based Explainability Framework for Large Multimodal Models

Jayneel Parekh

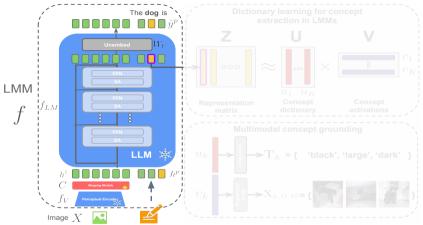
ISIR, Sorbonne Université

Collaborators: Pegah Khayatan, Mustafa Shukor, Alasdair Newson, Matthieu Cord

NeurIPS 2024

Multimodal learning tasks and models

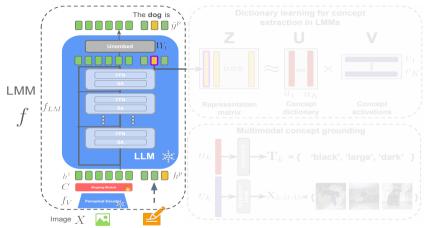
- Default human perception is multimodal
- Focus on Large Multimodal Models (LMMs) processing visual data (eg. Flamingo, LLaVA)
- Popular for solving captioning, question-answering, reasoning tasks


What is our aim?

- ullet Pretrained LMM f= Visual encoder $(f_V)+$ Connector (C)+ Language model (f_{LM})
- Captioning dataset $S = \{(X_i, y_i)\}_{i=1}^N$. Images $X_i \in \mathcal{X}$ and captions $y_i \subset \mathcal{Y}$
- A token of interest $t \in \mathcal{Y}$ (Eg. 'Dog', 'Cat' etc.)

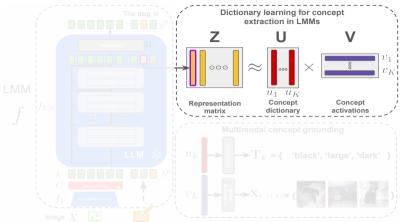
Aim: Understand internal representations of f about t in terms of high-level concepts

Contribution: A Concept based eXplainability framework for LMMs (CoX-LMM)


Design of CoX-LMM

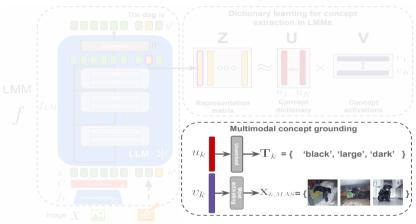
- Input to f_{LM} Concatenated sequence of tokens: (1) Visual tokens $C(f_V(X))$, (2) textual tokens previously predicted by f_{LM}
- ullet Caption predicted by f_{LM} trained for next-token prediction task

Design of CoX-LMM



- ullet Extract residual stream representations of t from f for a relevant set of images ${f X}$
- ullet Collect all such B-dimensional representations as columns of matrix $\mathbf{Z} \in \mathbb{R}^{B imes M}$

Design of CoX-LMM



• Dictionary learning for concept extraction. Semi-NMF optimization: $\mathbf{U}^*, \mathbf{V}^* = \arg\min_{\mathbf{U}, \mathbf{V}} ||\mathbf{Z} - \mathbf{U}\mathbf{V}||_F^2 + \lambda ||\mathbf{V}||_1 \quad s.t. \ \mathbf{V} \geq 0, \ \text{and} \ ||u_k||_2 \leq 1 \ \forall k \in \{1, ..., K\}$

ullet Columns of $\mathbf{U}^* \in \mathbb{R}^{B imes K}$ — concept vectors. Rows of $\mathbf{V}^* \in \mathbb{R}^{K imes M}$ — concept activations

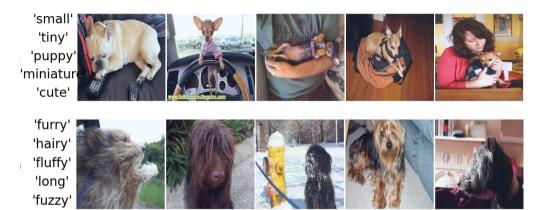
ISIR NOTIFE DOS SISTEMES NOTIFICATIONS

Design of CoX-LMM: Multimodal concept grounding!

- Text grounding: Decode concept vector u_k with f_{LM} head and extract top tokens
- Visual grounding: Extract most activating samples for u_k (via activations v_k)

• Different types of 'dogs'

'brown' 'large' 'dog' 'tan' 'golden'



- Different types of 'dogs'
- Concepts about color

- Different types of 'dogs'
- Concepts about color, characteristics

- Different types of 'dogs'
- Concepts about color, characteristics, state

'cat' 'kitten' 'tiger' 'rabbit' 'dog'

- Different types of 'dogs'
- Concepts about color, characteristics, state, or related objects

The End

Thanks for the attention!

 $Project\ webpage:\ https://jayneelparekh.github.io/LMM_Concept_Explainability/$

Code: https://github.com/mshukor/xl-vlms