Hi there! Welcome to the talk. I'm presenting “Why are Visually-Grounded Language Models (VLMs) Bad at Image Classification” for

NeurlPS 2024.
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VLMs represent a family of models designed to learn a joint distribution of image and text tokens, typically through an auto-
regressive approach. They generally include a vision encoder, paired with a language model, and a connecting projector.

Background

What is Visually-Grounded Language Model (VLM)?
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VLMs have shown impressive versatility, excelling in tasks like image captioning, visual question answering, visual reasoning, and
even more advanced agent-based applications.

Background

Visually-Grounded Language Models (VLM) Enable Many Capabilities
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In this study, we revisit the fundamental task of image classification using VLMs.

In this study, we revisit image
classification using VLMs.




To use a VLM for image classification, we simply ask the model about the content of an image, choose from candidate classes, and
check whether its response includes the correct class name.

How to Use VLM for Classification?
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Surprisingly, we found that VLMs like GPT-4V or Gemini perform significantly worse than CLIP on standard benchmarks such as
ImageNet and Flowers.

VLMs are bad at Classification
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VLMs are much worse than CLIP



This raised a big guestion: why is this happening? We rigorously investigated this question through a series of hypotheses, each
carefully tested.

Why are VLMs Bad at
Classification?




Hypothesis Space
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The results showed that prompt variation had very limited impact, indicating that prompts alone weren't the problem.

1. Prompt Variation

Prompt ImageNet Flowers
Default Prompt “What type of object is in this photo?” 22.8 5.9
Alternative Prompt “What is the main object depictured in
: " 21.6 0.6
this photo?
+ CoT “Let’s think step by step” N/A 181
CLIP 74.8 /6.0

Prompt has a limited impact



Hypothesis Space
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When reducing from 100 to just 2 classes, we saw the gap between LLaVA and CLIP narrow slightly, but it still persisted—even in

2. Label Space
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Hypothesis Space
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We used the probability inference technigue to select the highest probability of all the class names. While this probability-based
approach improved accuracy, the gap between LLaVA and CLIP remained.

3. Inference Algorithm

Prompt ImageNet Flowers

Direct Generation O(1) 29 8 59

(Success: whether label in generation)

Probabality Inference O(N) 35.3 16.5

(Success: whether pllabel | image, prompt) is highest)

CLIP 74.8 76.0

Probabilistic inference improves but gap persists



Hypothesis Space
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We checked this by training a probing network on the final VLM layer to assess information retention. Surprisingly, we found that
most information was preserved, but it couldnt be effectively decoded.

4. Information Lost
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The fifth hypothesis was on the training objective. Traditional classification uses cross-entropy loss, while VLMs use a text
generation objective, which might be suboptimal for classification tasks.
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To test this, we converted classification datasets to an instructional format and fine-tuned the VLM using a text generation
objective. Surprisingly, fine-tuning closed the gap, boosting LLaVA's accuracy on ImageNet to 86%.

5. Training Objective

ImageNet Flowers

Fine-tuned LLaVA-7B 85.7 97.6

Fine-tuned CLIP 85.2 08.6

Fine-tuning eliminates the gap.
Text generation objective is as effective as cross-entropy.



Our final hypothesis focused on data. We theorized that VLMs hadn't seen enough classification-specific data or classes during
training. We analyzed the distribution of training data and its influence on performance.

Hypothesis Space
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We discovered a strong linear correlation between the frequency of a class in VLM training data and the VLM's accuracy on that
class! Combined with our fine-tuning results, we concluded that data matters significantly.

6. Data
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Through these hypotheses, we highlight a data-centric view of VLM training, showing that adding multimodal data is essential for
aligning VLM performance and that performance increases linearly with added data.
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Finally, why use VLMs for classification when CLIP already performs well? We believe that classification forms the foundation for
more complex capabilities.

Why Using VLM for
Classification?




For instance, identitying whether a mushroom is poisonous requires first identitying its species—a task that VLMs, like Gemini,
currently struggle with.

Classification is Foundation
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Therefore, improving classification capabilities in VLMs is essential, as it forms a solid foundation for more advanced functions, such
as knowledge utilization and reasoning.

Classification is Foundation
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To further test this, we created ImageWikiQA. Using Wikipedia pages for ImageNet classes, we generated multiple-choice questions
with GPT, masking class names and replacing them with ImageNet images.

ImageWikiQA

Search Create account Login eee

— % WIKIPEDIA | Kiped
- '“f:«. % The Free Encyclopedia Q Search Wikipedia

Question: Which type of waters does
Tench . 73 anguages this object primarily inhabit?

Contents hide Article Talk Read Edit View history Tools v
(Top) From Wikipedia, the free encyclopedia A . F a S t —_— f -l_ OW i n g S t r e a m S
Taxonomy

For other uses, see Tench (disambiguation).

Ecology This article is about the fish sometimes used as a substitute for carp in recipes. For the freshwater fish used for treating B u S -l- OW— m O V l n g f r e S h Wa t e r h a b l t a t S W l t h
Morphology skin diseases, see Doctor fish. d d b _t t V
Golden tench The tench or doctor fish (Tinca tinca) is a fresh- and brackish-water fish of the m u y S u S r a e
order Cypriniformes found throughout Eurasia from Western Europe including the . . C O .t
British Isles east into Asia as far as the Ob and Yenisei Rivers.I®! It is also found in u p e n O C e a n Wa e r S
D. Clear waters with stony substrate

Economic significance

Angling

Lake Baikal.[*] It normally inhabits slow-moving freshwater habitats, particularly
References lakes and lowland rivers. 516

Taxonomy |edit]

The tench was formerly classified in the subfamily Leuciscinae with other Eurasian
minnows, but more recent phylogenetic studies have supported it belonging to its
own family Tincidae.[”](&]

Reference: It normally inhabits slow-

s ki moving freshwater habitats, particularly

Cﬁiggﬁﬂﬁf lakes and lowland rivers.

Ecology [edit]




To answer these guestions, models first need to classity the ImageNet object correctly before leveraging knowledge to answer.
Current VLMs struggle with classification, leading to poor performance on this benchmark.

ImageWikiQA Results

Prompt ImageWikiQA
GPT4 w/ GT Classhame 100.0
GeminiPro 491
Claude3 54.3
GPT4 61.2

LLaVA-7B 38.0




However, when we fine-tuned LLaVA on the ImageNet classification dataset, we saw substantial improvements in classification
ability, which also enhanced its general capabilities, improving ImageWikiQA performance by 11.8%.

ImageWikiQA Results

Prompt ImageWikiQA
GPT4 w/ GT Classname 100.0
GeminiPro 491
Claude3 54.3
GPT4 61.2
LLaVA-7B 38.0
LLaVA-7B Fine-tuned on ImageNet Classification 49.8

enhanced classification & enhanced general capabilities




Here are our key takeaways. Thank you for watching, and please check out our paper for more details!

VLM Classifier:

Critical information forimage classificationis:encodedin the
VLM’s latent space but cannot be decoded.

With enough training data, VLMs matchCLIP in classification.

Enhanced classification performance transfersto general
capabilities.




