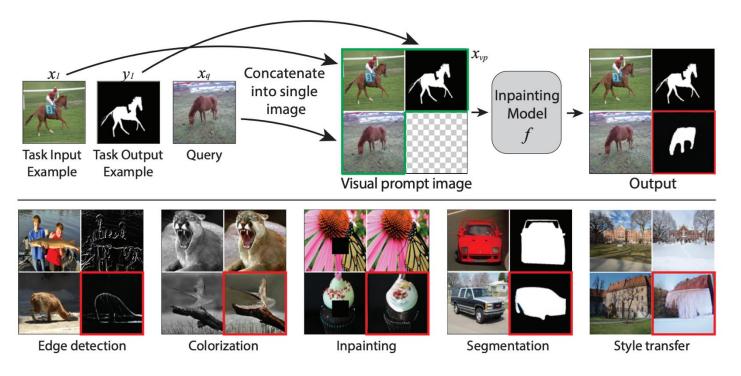
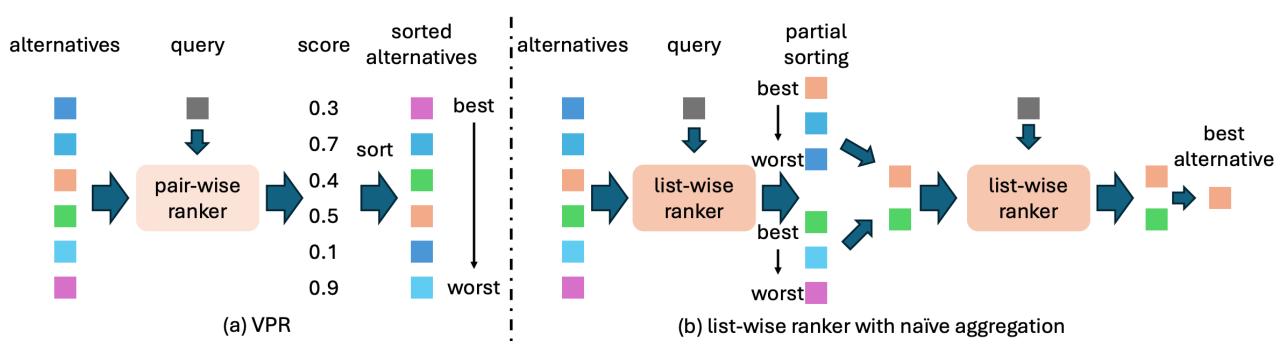

Towards Global Optimal Visual In-Context Learning Prompt Selection

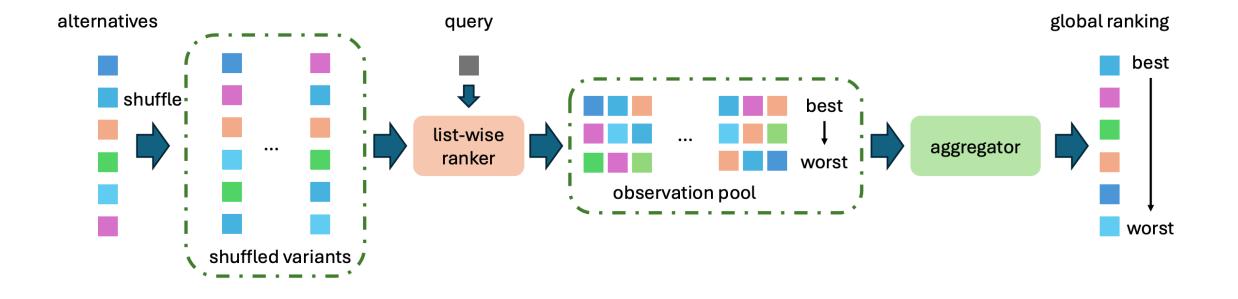
Chengming Xu*, Chen Liu*, Yikai Wang[†], Yuan Yao, Yanwei Fu



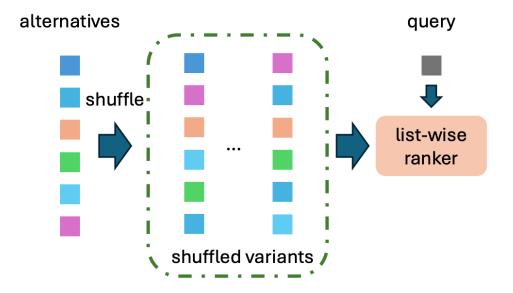
Visual In-context Learning (VICL)


- inference using task&data domain provided by in-context prompts
- built on masked modelling

Bar A, Gandelsman Y, Darrell T, et al. Visual prompting via image inpainting[J]. NeurIPS2022. Wang X, Wang W, Cao Y, et al. Images speak in images: A generalist painter for in-context visual learning[C]//CVPR2023.



- random sample
- ranking the candidates
 - right metric
 - proper comparison set


Bar A, Gandelsman Y, Darrell T, et al. Visual prompting via image inpainting[J]. NeurIPS2022. Wang X, Wang W, Cao Y, et al. Images speak in images: A generalist painter for in-context visual learning[C]//CVPR2023.

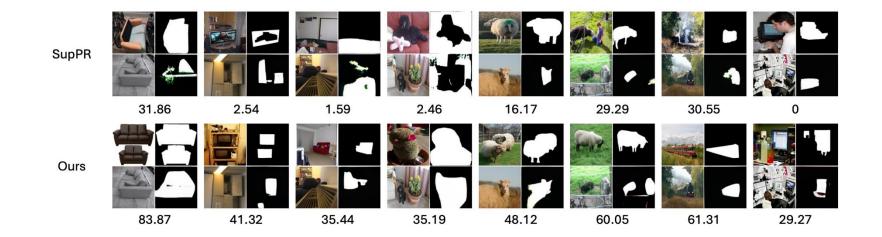
List-wise ranker with consistency-aware aggregator

List-wise ranker with consistency-aware aggregator

transformer-based ranker

- sample a subset from alternative set
- concatenate their features from DINOv2
- process with extra transformer layers
- predict rankings with all class tokens

optimization: margin loss + NeuralNDCG + MSE


Algorithm 1 Consistency-aware ranking aggregator

Input: Train set \mathcal{X}_{train} , query sample x_q , trained ranking models $\{\phi_k\}$, alternative set size K. 1: Alternative set $\mathcal{X}_R = top K_{\hat{x} \in \mathcal{X}_{train}}(sim(\hat{x}, x_q))$ 2: Initial preference matrix set $\mathcal{S} := \emptyset$ 3: for rank-k model ϕ_k do Build observation pool \mathcal{X}_k from \mathcal{X}_R 4: for randomly shuffled \mathcal{X}_k^i from \mathcal{X}_k do 5: $\mathcal{R}_k^i = \bigcup_{x \in \mathcal{X}_k^i} \phi_k(x, x_q)$ 6: Aggregate \mathcal{S}^i from \mathcal{R}^i_k 7: $\mathcal{S} = \mathcal{S} \mid \mathcal{J} \mathcal{S}^i$ 8: end for 9: 10: end for 11: Aggregate global ranking r as Eq. 3 12: return Top ranked sample.

aggregate all piecewise ranking prediction for a consistent global ranking

Madal		Se	g. (mIoU)				
Model	Fold-0	Fold-1	Fold-2	Fold-3	Avg.	Det. (mIoU) ↑	Color. (MSE) \downarrow
MAE-VQGAN	28.66	30.21	27.81	23.55	27.56	25.45	0.67
UnsupPR	34.75	35.92	32.41	31.16	33.56	26.84	0.63
SupPR	37.08	38.43	34.40	32.32	35.56	28.22	0.63
Ours	38.81	41.54	37.25	36.01	38.40	30.66	0.58
prompt-SelF	42.48	43.34	39.76	38.50	41.02	29.83	
Ours+voting	43.23	45.50	41.79	40.22	42.69	32.52	—

Table 1: Comparison of our method with previous in-context learning methods.

Backbone	Strategy		Se	Det (mIaII) +			
		Fold-0	Fold-1	Fold-2	Fold-3	Avg.	Det. (mIoU) ↑
CLIP	Naive	37.37	40.11	36.84	33.88	37.05	29.69
	Aggr.	38.58	41.34	37.66	35.91	38.37	30.79
DINOv1	Naive	38.78	40.02	36.92	35.12	37.71	28.03
	Aggr.	39.25	42.27	38.45	36.77	39.19	29.19
DINOv2	Naive	37.51	39.69	36.62	34.58	37.10	29.58
	Aggr.	38.81	41.54	37.25	36.01	38.40	30.66

Strategy		Dat (mIaII) A				
	Fold-0	Fold-1	Fold-2	Fold-3	Avg.	Det. (mIoU) ↑
#1 rank	38.81	41.54	37.25	36.01	38.40	30.66
#2 rank	38.13	41.66	37.62	35.35	38.19	30.76
#3 rank	38.66	41.08	37.36	35.91	38.25	30.61
top2 fusion	39.08	42.61	38.17	36.67	39.13	30.16
top3 fusion	40.07	42.48	38.77	37.61	39.73	31.85
top5 fusion	40.12	42.59	39.09	37.28	39.77	32.08

Thank you!