Natural Counterfactuals With Necessary Backtracking

Guang-Yuan Hao*, Jiji Zhang*, Biwei Huang, Hao Wang, Kun Zhang

Background

Consider a scenario: A sudden brake of a high-speed bus caused Tom (cat) to fall and injure Jerry (mouse).

Non-backtracking counterfactuals:

If A had been a^* what would the value of **B**? For example, if Tom had still (despite the sudden stood braking), then Jerry would not have been injured.

Figure 1. Motivation Example

The problem of non-backtracking counterfactuals:

- Surgical interventions are sometimes so removed from what are or can be. Preventing Tom's fall in a sudden braking scenario requires defying mechanisms that are difficult or even physically impossible to disrupt.
- As a result, there are likely to be no data points in the reservoir of observed scenarios that are consistent with a person standing still during a sudden braking.

Motivation: Naturalness

Our New Notion of Natural Counterfactuals: Allow a certain amount of backtracking, to keep the counterfactual scenario "natural" with respect to the available observations.

- Non-Backtracking Counterfactuals interpret a statement like "if A had been a^* ..." as "if A had been a^* , while keeping all upstream variables unchanged..." This implies that we impose the change on A without considering how earlier causes of A might need to be altered to accommodate this change. The focus is on an isolated alteration of A, holding all prior conditions fixed.
- Natural Counterfactuals interpret "if A had been a^* ..." as "if A had been a^* , while allowing small adjustments upstream to ensure naturalness." In this approach, changes to A are made along with slight modifications in its upstream causes, so that the scenario feels natural. For the example above, a more natural counterfactual scenario to realize the change to not-falling would involve changing at the same time some causally preceding events, such as changing the sudden braking to gradually slowing down.

NeurIPS 2024

Preliminaries

(1)

Table 1: MAE Results on Toy (Lower MAE is better). To save room, we also write "do" for "change" for natural counterfactuals.

Dataset	Toy 1			
do or change	do(n_1)	$ \operatorname{do}(n_2) $	
Outcome	$\mid n_2$	n_3	$\mid n_3$	
Nonbacktracking Ours	0.477 0.434	0.382 0.354	0.297	

tracking. Data

We

Sto

Structural Causal Model (SCM): A SCM $\mathcal{M} := \langle \mathbf{U}, \mathbf{V}, \mathbf{f}, p(\mathbf{U}) \rangle$ $\mathbf{V}_i := f_i(\mathbf{PA}_i, \mathbf{U}_i), \quad i = 1, \dots, N$

Local Mechanisms: $p(\mathbf{V}_i | \mathbf{PA}_i)$ for i = 1, ..., N

Three-Step Procedure of Non-Backtracking Counterfactuals:

A general counterfactual question takes the following form: given evidence $\mathbf{E} = \mathbf{e}$, what would the value of **B** have been if **A** had been $a^{*}?$

- 1. Update **p(U)** as **p(U|E=e)**;
- 2. Modify Causal Model as M_A ;
- 3. Do inference on $\langle \mathbf{p}(\mathbf{U}|\mathbf{E}=\mathbf{e}), \mathbf{M}_A \rangle$

A Framework for Natural Counterfactuals

Do(·) and **Change(·)** Operators: We use Change($A = a^*$) to indicate setting A to a^* in our natural counterfactuals.

Natural Counterfactuals:

- 1. Minimal Change: Counterfactual data point should be as close to the actual data point as possible.
- 2. Necessary Backtracking: Allow Necessary backtracking to achieve $Change(\mathbf{A}=\mathbf{a}^*)$, i.e., variables in A's causal upstream need to change together with A;
- 3. Naturalness: the counterfactual scenario is kept within the relevant support by necessary backtracking.

Feasible Intervention Optimization (FIO):

$\underset{an(\mathbf{A})^*}{\text{minimize}}$	$D(an(\mathbf{A}), an(\mathbf{A})^*)$	Distance for minimal change	
s.t.	$\mathbf{A} = \mathbf{a}^*,$	Change(A= a^*)	(2)
	$g_n(an(\mathbf{A})^*) > \epsilon.$	Naturalness constraint	

Identifiable Natural Counterfactuals

Theorem 4.1 (Identifiable Natural Counterfactuals). *Given the causal graph and the joint distribution* over V, suppose V_i satisfies the following structural causal model: $V_i := f_i(\mathbf{PA}_i, \mathbf{U}_i)$ for any $\mathbf{V}_i \in \mathbf{V}$, assume every f_i , though unknown, is smooth and strictly monotonic w.r.t. \mathbf{U}_i for fixed values of \mathbf{PA}_i . Then, given an actual data point $\mathbf{V} = \mathbf{v}$, with a LBF intervention $do(\mathbf{C} = \mathbf{c}^*)$ (satisfying the criterion of ϵ -natural generation), the counterfactual instance $\mathbf{V} = \mathbf{v}^*$ is identifiable: $\mathbf{V} = \mathbf{v}^* | do(\mathbf{C} = \mathbf{c}^*), \mathbf{V} = \mathbf{v}.$

Experiments

Figure 2. Causal Graph of Toy 1

Figure 4. 3DIdentBOX

|h|

Figure 3. Visualization on *Toy 1*

 Table 3: MAE Results on Weak-3DIdent and Strong-3DIdent

(abbreviated as "Weak" "Strong" for simplicity). Lower MAE is better. For clarity, we use "Non" to denote Nonback-

aset	-		d	h	v	γ	lpha	eta	b
ak	Non	0	.025	0.019	0.035	0.364	0.27	0.077	0.0042
	Ours	0	.024	0.018	0.034	0.349	0.221	0.036	0.0041
ng	Non	0	.100	0.083	0.075	0.387	0.495	0.338	0.0048
	Ours	0	.058	0.047	0.050	0.298	0.316	0.139	0.0047