

Neural Residual Diffusion Models for Deep Scalable Vision Generation

The Thirty-Eighth Annual Conference on Neural Information Processing Systems

Zhiyuan Ma

(mzyth@tsinghua.edu.cn)

Tsinghua University, Beijing, China December, 2024

01	Background

- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

01 Background

- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

□ Deep Generative Diffusion Networks

✓ The mainstream denoising backbones: <u>U-Net、Transformer、U-ViT、DiT... (U-shaped / F-shaped)</u>

□ Representative Generative Diffusion Models

Methods	Year	Organization	Backbone	VAE	Text Encoder	# Params
ADM [4]	2021	OpenAI			-	554M
CDM [157]	2021	Google		None	-	-
DALL-E 2 [6]	2022	OpenAI		None	CLIP	6.5B
Imagen [5]	2022	Google	Unet		T5-XXL	3B
LDM [33]	2022	LMU Munich	Unet		CLIP ViT-L	400M+55M(VAE)
SD1.5 [33]	2022	LMU Munich			CLIP ViT-L	860M
SD2.0 [33]	2022	LMU Munich		2D VAE	OpenCLIP ViT-H	865M
SDXL [8]	2023	Stability AI			CLIP ViT-L & OpenCLIP ViT-bigG	2.6B
Playground-v2.5 [158]	2024	Playground			CLIP	-
UViT [72]	2022	Tsinghua University			CLIP ViT-L	501M+84M(VAE)
DiT [73]	2022	UC Berkeley			CLIP ViT-L	675M+84M(VAE)
PixArt- α [81]	2023	Huawei Noah's Ark Lab			T5-XXL	600M
FiT [74]	2024	Shanghai AI Lab			CLIP ViT-L	-
SiT [75]	2024	New York University		2D VAE	CLIP ViT-L	675M
Latte [79]	2024	Shanghai AI Lab			T5-XXL	673.68M
Hunyuan-DiT [159]	2024	Tencent Hunyuan			mCLIP & mT5-XL	1.5B
LuminaT2X [160]	2024	Shanghai AI Lab	Transformer		LLama2-7B	7B
Kolors [161]	2024	Kuaishou	Transformer	Ci	ChatGLM3-6B-Base	2.6B
SD3.0 [80]	2024	Stability AI			CLIP ViT-L & OpenCLIP ViT-bigG & T5-XXL	8B
Flux.1 [162]	2024	BlackForestLabs			CLIP ViT-L & OpenCLIP ViT-bigG & T5-XXL	12B
Sora [163]	2024	OpenAI			-	-
Open-Sora [164]	2024	Hpcaitech			T5-XXL	1.2B
Open-Sora-Plan [165]	2024	Peking University		3D VAE	T5 & mT5	-
EasyAnimate [166]	2024	Alibaba Group			mCLIP & mT5-XL	1.5B
CogvideoX [82]	2024	Zhipu AI			T5-XXL	2B/5B
Moive Gen [83]	2024	Meta		TAE	MetaCLIP & UL2 & ByT5	30B

✓ The core of generative intelligence emergence: Scaling Law with increasingly deep stacked networks

- 01 Background
- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

☐ The essential principle of how the generative denoising network works?

> Core:

The optimization direction of neural network $\mathcal{F}_{\theta}(z_t,t)$ The direction of inverted diffusion of the data z_t

> Issue:

- 1. Asymmetry (coupling) of network predictions: $\mathcal{F}_{\theta}(\boldsymbol{z}_{t},t)$ $\hat{\boldsymbol{\alpha}}_{t,\phi} \cdot \mathcal{F}_{\theta}(\boldsymbol{z}_{t},t) + \hat{\boldsymbol{\beta}}_{t,\phi}$ Unbalanced (One Lay
- 2. Training architecture is difficult to scale: $\mathcal{F}_{\theta}(\boldsymbol{z}_t,t)$ $\{f_{\theta_1},\cdots,f_{\theta_i},\cdots,f_{\theta_L}\}$ Unstable (Deep Layer

$$\{f_{ heta_1}, \cdots, f_{ heta_i}, \cdots, f_{ heta_L}\}$$

- 01 Background
- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

■ Neural Residual Diffusion Models

> Gating-Residual Mechanism

$$\hat{\boldsymbol{z}}_{i} = \boldsymbol{z}_{i+1} = \boldsymbol{z}_{i} + [\alpha_{i} \cdot f_{\theta_{i}}(\boldsymbol{z}_{i}) + \beta_{i}]. \quad \text{(Discrete Form)} \longrightarrow \frac{\boldsymbol{z}_{i+\delta} - \boldsymbol{z}_{i}}{\delta} = \hat{\boldsymbol{z}}_{i} - \boldsymbol{z}_{i} = \hat{\alpha}_{i} \cdot \mathcal{F}_{\theta_{i}}(\boldsymbol{z}_{i}) + \hat{\beta}_{i} \Longrightarrow \frac{d\boldsymbol{z}_{t}}{dt} = \hat{\alpha}_{\phi} \cdot \mathcal{F}_{\theta_{t}}(\boldsymbol{z}_{t}) + \hat{\beta}_{\phi}$$

$$\hat{\boldsymbol{z}}_{i} = \underbrace{\alpha_{i}^{(l)} \cdot f_{\theta_{i}^{(l)}}(\boldsymbol{z}_{i}) + \beta_{i}^{(l)}}_{\text{read-in branch}} \hookrightarrow \underbrace{\boldsymbol{z}_{i} + \alpha_{i}^{(r)} \cdot f_{\theta_{i}^{(r)}}(\boldsymbol{z}_{2L-2-i}) + \beta_{i}^{(r)}}_{\text{read-out branch}} = \boldsymbol{z}_{i} + \hat{\alpha}_{i} \cdot \mathcal{F}_{\theta_{i}}(\boldsymbol{z}_{i}) + \hat{\beta}_{i}. \quad \text{(U-shaped)}$$

$$\text{Continuous Form)}$$

$$\text{Gating Residual Modulation}$$

■ Neural Residual Diffusion Models

> Denoising Dynamics Parameterization

$$d\boldsymbol{z}_{t} = \boldsymbol{\mu}(\boldsymbol{z}_{t}, t)dt + \boldsymbol{\sigma}(t)d\mathbf{w}_{t} \Longrightarrow \frac{d\boldsymbol{z}_{t}}{dt} = \boldsymbol{\mu}(\boldsymbol{z}_{t}, t) + \boldsymbol{\sigma}(t) \cdot \boldsymbol{\epsilon}_{t}. \text{ (Noise-Adding SDE)}$$

$$\downarrow d\boldsymbol{z}_{t}$$

$$d\boldsymbol{z}_{t} = \boldsymbol{\mu}(\boldsymbol{z}_{t}, t) - \frac{1}{2}\boldsymbol{\sigma}(t)^{2} \cdot \left[\nabla_{z} \log p_{t}(\boldsymbol{z}_{t})\right] = \hat{\boldsymbol{\alpha}}_{t, \phi} \cdot \mathcal{F}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t}, t) + \hat{\boldsymbol{\beta}}_{t, \phi}, \text{ (Denoising-ODE)}$$

■ Neural Residual Diffusion Models

> Residual Sensitivity Control

- ◆ To control the numerical errors in back-propagation and achieve steadily and massively scalable training
- ◆ We introduce *Residual-Sensitivity ODE*:

 $ext{Define } extbf{ extit{Residual-Sensitivity}}: \;\; m{s}_t = rac{d\mathcal{L}}{dm{z}_t} = rac{d\mathcal{L}}{dm{z}_{t+\delta}} \cdot rac{dm{z}_{t+\delta}}{dm{z}_t} = m{s}_{t+\delta} \cdot rac{dm{z}_{t+\delta}}{dm{z}_t}.$

Residual-Sensitivity ODE

$$rac{doldsymbol{s}_t}{dt} = \lim_{\delta o 0^+} rac{oldsymbol{s}_{t+\delta} - oldsymbol{s}_t}{\delta} = \lim_{\delta o 0^+} rac{-oldsymbol{s}_{t+\delta} \cdot rac{\partial}{\partial oldsymbol{z}_t} (\int_t^{t+\delta} f_{ heta}(oldsymbol{z}_t) dt)}{\delta} = -oldsymbol{s}_t \cdot rac{\partial f_{ heta}(oldsymbol{z}_t, t)}{\partial oldsymbol{z}_t}.$$

Methods

3.3.1

Residual Sensitivity Control

- ◆ To control the numerical errors in back-propagation and achieve steadily and massively scalable training
- lacktriangle First, we define **Residual-Sensitivity**: $m{s}_t = \frac{d\mathcal{L}}{dm{z}_t}$

$$s_{t} = \frac{d\mathcal{L}}{d\boldsymbol{z}_{t}} = \frac{d\mathcal{L}}{d\boldsymbol{z}_{t+\delta}} \cdot \frac{d\boldsymbol{z}_{t+\delta}}{d\boldsymbol{z}_{t}} = \boldsymbol{s}_{t+\delta} \cdot \frac{d\boldsymbol{z}_{t+\delta}}{d\boldsymbol{z}_{t}}. \quad \Longrightarrow \quad \boldsymbol{\cdot} \cdot d\boldsymbol{z}_{t+\delta} = d\boldsymbol{z}_{t} + \int_{t}^{t+\delta} f_{\theta}(\boldsymbol{z}_{t}, t) dt. \quad \boldsymbol{\cdot} \cdot \boldsymbol{s}_{t} = \boldsymbol{s}_{t+\delta} + \boldsymbol{s}_{t+\delta} \cdot \frac{\partial}{\partial \boldsymbol{z}_{t}} (\int_{t}^{t+\delta} f_{\theta}(\boldsymbol{z}_{t}, t) dt).$$
(Chain Rule)
(Euler Solver)

Residual-Sensitivity ODE

$$\mathbf{\cdot \cdot} \quad \boldsymbol{s}_t = \boldsymbol{s}_{t+\delta} + \boldsymbol{s}_{t+\delta} \cdot \frac{\partial}{\partial \boldsymbol{z}_t} (\int_t^{t+\delta} f_{\theta}(\boldsymbol{z}_t, t) dt). \quad \mathbf{\cdot \cdot} \quad \frac{d\boldsymbol{s}_t}{dt} = \lim_{\delta \to 0^+} \frac{\boldsymbol{s}_{t+\delta} - \boldsymbol{s}_t}{\delta} = \lim_{\delta \to 0^+} \frac{-\boldsymbol{s}_{t+\delta} \cdot \frac{\partial}{\partial \boldsymbol{z}_t} (\int_t^{t+\delta} f_{\theta}(\boldsymbol{z}_t) dt)}{\delta} = -\boldsymbol{s}_t \cdot \frac{\partial f_{\theta}(\boldsymbol{z}_t, t)}{\partial \boldsymbol{z}_t}.$$

lacktriangle Then, we further use the **Euler solver** to obtain the sensitivity $oldsymbol{s}_{t_0}$:

$$oldsymbol{s}_{t_0} = oldsymbol{s}_{t_L} + \int_{t_L}^{t_0} rac{doldsymbol{s}_t}{dt} dt = oldsymbol{s}_{t_L} - \int_{t_L}^{t_0} oldsymbol{s}_t \cdot rac{\partial f_{ heta}(oldsymbol{z}_t,t)}{\partial oldsymbol{z}_t} dt. \quad \longrightarrow \quad oldsymbol{s}_{t_L} \, > \, oldsymbol{s}_{t_{L-1}} \, > \, \cdots \, > \, oldsymbol{s}_{t_0}$$

(non-negativity)

gradually decaying sensitivity!

• Similarly, we can define *parameter-sensitivity*: $s_{\theta} = \frac{d\mathcal{L}}{d\theta}$, we can derive:

$$oldsymbol{s}_{ heta_0} = oldsymbol{s}_{ heta_L} + \int_{t_L}^{t_0} rac{doldsymbol{s}_{ heta}}{dt} dt = oldsymbol{s}_{ heta_L} - \int_{t_L}^{t_0} \mathbf{s}_{ heta} \cdot rac{\partial f_{ heta}(oldsymbol{z}_t,t)}{\partial heta} dt. \quad \longrightarrow \quad oldsymbol{s}_{ heta_L} > oldsymbol{s}_{ heta_{L-1}} > \cdots > oldsymbol{s}_{ heta_0}$$

Residual Sensitivity Control

◆ So far, we have explored the current situation of the problem:

$$\frac{ds_{t}}{dt} = \lim_{\delta \to 0^{+}} \frac{s_{t+\delta} - s_{t}}{\delta} = \lim_{\delta \to 0^{+}} \frac{-s_{t+\delta} \cdot \frac{\partial}{\partial \boldsymbol{z}_{t}} (\int_{t}^{t+\delta} f_{\theta}(\boldsymbol{z}_{t}) dt)}{\delta} = -s_{t} \cdot \frac{\partial f_{\theta}(\boldsymbol{z}_{t}, t)}{\partial \boldsymbol{z}_{t}}.$$

$$\boldsymbol{s}_{\theta_{0}} = \boldsymbol{s}_{\theta_{L}} + \int_{t_{L}}^{t_{0}} \frac{d\boldsymbol{s}_{t}}{dt} dt = \boldsymbol{s}_{t_{L}} - \int_{t_{L}}^{t_{0}} \boldsymbol{s}_{t} \cdot \frac{\partial f_{\theta}(\boldsymbol{z}_{t}, t)}{\partial \boldsymbol{z}_{t}} dt.$$

$$\boldsymbol{s}_{\theta_{0}} = \boldsymbol{s}_{\theta_{L}} + \int_{t_{L}}^{t_{0}} \frac{d\boldsymbol{s}_{\theta}}{dt} dt = \boldsymbol{s}_{\theta_{L}} - \int_{t_{L}}^{t_{0}} \boldsymbol{s}_{\theta} \cdot \frac{\partial f_{\theta}(\boldsymbol{z}_{t}, t)}{\partial \theta} dt.$$

◆ Subsequently, we apply **Gating-Residual** and **Mean-Variance Parameterization** to **Residual-Sensitivity ODE**:

$$rac{d\hat{m{s}}_t}{dt} = \lim_{\delta o 0^+} rac{\hat{m{s}}_{t+\delta} - \hat{m{s}}_t}{\delta} = -(lpha_{t,\phi} \cdot \hat{m{s}}_t) \cdot rac{\partial f_{ heta}(\hat{m{z}}_t,t)}{\partial \hat{m{z}}_t} - (eta_{t,\phi} \cdot \hat{m{s}}_t).$$

$$egin{aligned} \hat{oldsymbol{s}}_{t_0} &= \hat{oldsymbol{s}}_{t_L} + \int^{t_0} rac{d\hat{oldsymbol{s}}_t}{dt} dt \ &= \hat{oldsymbol{s}}_{t_L} - \int_{t_L}^{t_0} \left[(lpha_{t,\phi} \cdot \hat{oldsymbol{s}}_t) \cdot rac{\partial f_{ heta}(\hat{oldsymbol{z}}_t,t)}{\partial \hat{oldsymbol{z}}_t} + (eta_{t,\phi} \cdot \hat{oldsymbol{s}}_t)
ight] dt. \end{aligned}$$

◆ Eventually, we can supervise it to achieve *Residual Sensitivity Control* via:

$$\mathcal{L}_s = ||\mathcal{F}_{\theta}(\hat{\boldsymbol{z}}_t, t) - \nabla_z \log p_t(\boldsymbol{z}_t)||_2^2 + \gamma \cdot \sum_L ||\alpha_{t,\phi} \cdot \frac{\partial f_{\theta}(\hat{\boldsymbol{z}}_t, t)}{\partial \hat{\boldsymbol{z}}_t} - \beta_{t,\phi}||_2^2$$
 (Rectified Term)

01	Background
----	------------

- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

Experiments on Image Synthesis with Deep Scalable Spatial Learning

Architecture	Method	Scalability	Class-to-Image			Text-to-Image		
	Method		FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑
GAN	BigGAN-deep [56]	X	6.95	7.36	171.4	-	-	-
GAN	StyleGAN-XL [57]	×	2.30	4.02	265.12	-	-	-
	ADM [58]	V	10.94	6.02	100.98	-	-	-
U-shaped	ADM-U	~	7.49	5.13	127.49	-	-	-
	ADM-G	~	4.59	5.25	186.70	-	-	-
	LDM-8 [30]	~	15.51	-	79.03	16.64	11.32	64.50
	LDM-8-G	~	7.76	-	209.52	9.35	10.02	125.73
	LDM-4	~	10.56	-	103.49	12.37	11.58	94.65
	LDM-4-G	✓	3.60	-	247.67	3.78	5.89	182.53
	DiT-XL/2 [59]	V	9.62	6.85	121.50	8.53	5.47	144.26
F-shaped	DiT-XL/2-G	~	2.27	4.60	278.24	3.53	5.48	175.63
	Latte-XL [60]	✓	2.35	5.17	224.75	2.74	5.35	195.03
Unified	Neural-RDM-U (Ours)	11	3.47	5.08	256.55	2.25	4.36	235.35
	Neural-RDM-F (Ours)	11	2.12	3.75	295.32	2.46	5.65	206.32

Table 1: The main results for image generation on ImageNet [61] (Class-to-Image) and JourneyDB [53] (Text-to-Image) with 256×256 image resolution. We highlight the best value in blue, and the second-best value in green. The Scalability column indicates the scaling capability of the parameter scale and architecture.

- Neural-RDMs have obtained competitive and state-ofthe-art results across image synthesis benchmarking.
- Benefiting from the rectification of generative dynamics, it highlights the semantics of the subject more.

"A landscape featuring a wooden bridge over a serene lake with a majestic mountain in the

complemented by

typography."

"A cartoon-style watercolor "A speckled headscarf, a cover illustration featuring swamp adder, and a flag vibrant pink and cream of India depicted in an hydrangeas in a Disneyinspired setting,

"A castle situated in the mountains with an array of very high thin towers adorned with numerous arrowslits."

"The King of Pentacles stands in a regal pose, surrounded by earthly riches, while a mysterious UFO hovers above, adding an element of otherworldly intrigue.

"A hyper-realistic portrait of "woman captain wearing a 17-year-old English girl a cocked hat stands on a with mismatched eyes, ship, gazing in awe and blonde curly hair adorned fear as a huge Cthulhu with flowers, holding a flute, emerges from the water." radiating pure joy."

silver skin wearing a helmet featuring a large glass visor, holding a rocket launcher in a futuristic setting, depicted with hyper-realistic..."

☐ Experiments on Video Generation with Deep Scalable Temporal Learning

	Scalability	Frame Evaluation		None-to-	Class-to-Video	
Method		FID↓	IS↑	SkyTimelapse (FVD↓)	Taichi-HD (FVD↓)	UCF-101 (FVD↓)
MoCoGAN [71]	X	23.97	10.09	206.6	-	2886.9
MoCoGAN-HD [72]	×	7.12	23.39	164.1	128.1	1729.6
DIGAN [73]	×	19.10	23.16	83.11	156.7	1630.2
StyleGAN-V [70]	×	9.45	23.94	79.52	-	1431.0
MoStGAN-V [74]	×	-	-	65.30	-	1380.3
PVDM [75]	V	29.76	60.55	75.48	540.2	1141.9
LVDM [12]	✓	-	-	95.20	99.0	372.0
VideoGPT [76]	V	22.70	12.61	222.7	-	2880.6
Latte-XL [60]	✓	5.02	68.53	59.82	159.60	477.97
Neural-RDM (Ours)	11	3.35	85.97	39.89	91.22	461.03

Table 2: The main results for video generation on the SkyTimelapse [62], Taichi-HD [63] and UCF-101 [64] with 256×256 resolution of each frame. We highlight the best value in blue , and the second-best value in green .

- ◆ Neural-RDMs (flow-shaped version) basically achieves the best results, except for the second-best results in class-to-video evaluation.
- ◆ Compare with the baseline, Neural-RDM maintains temporal coherence and consistency, resulting in smoother and more dynamic video frames.

Figure 6: (a), (b), and (c) respectively illustrate the performance of the five residual structures variant models across the SkyTimelapsee [62], Taichi-HD[63], and UCF-101 [64].

☐ Comparison Experiments of Gating Residual Variants and Deep Scalability

- ◆ As the number of training steps increases, almost all variants can converge effectively, but only Variant-0 (Our approach) achieves the best FVD scores.
- ◆ As the depth of residual units increases, the performance of the model can be further improved, which further highlights the deep scalability advantage of Neural-RDM.

- 1) Variant-0 (Ours): $z_{i+1} = z_i + \alpha f(z_i) + \beta$;
- ② Variant-1 (AdaLN [77]): $z_{i+1} = z_i + f(\alpha z_i + \beta)$;
- ③ *Variant-2*: $z_{i+1} = \alpha z_i + f(z_i) + \beta$;
- 4 *Variant-3 (ResNet [78])*: $z_{i+1} = z_i + f(z_i)$;
- (5) Variant-4 (ReZero [79]): $z_{i+1} = z_i + \alpha f(z_i)$.

Figure 6: (a), (b), and (c) respectively illustrate the performance of the five residual structures variant models across the SkyTimelapsee [62], Taichi-HD[63], and UCF-101 [64].

01	Background
----	------------

- 02 Motivation
- 03 Methods
- 04 Experiment
- 05 Conclusion

✓ Propose a unified neural residual diffusion models framework

We practically unify u-shaped and flow-shaped stacking networks and to propose a unified and deep scalable neural residual diffusion model framework.

✓ Parameterize the mean-variance scheduler for excellent dynamics consistency

Moreover, we theoretically parameterize the previous human-designed mean-variance scheduler and demonstrate excellent dynamics consistency.

✓ Adequate and extensive experiments and analyses

Experimental results on various generative tasks show that Neural-RDM obtains the best results, and extensive experiments also demonstrate the advantages in improving the fidelity, consistency of generated content and supporting large-scale scalable training.

Thanks for your listening

Zhiyuan Ma

(https://ponymzy.github.io)

Department of Electronic Engineering,

Tsinghua University, Beijing, China mzyth@tsinghua.edu.cn