• Q-Distribution guided Q-learning for offline reinforcement learning: Uncertainty penalized Q-value via consistency model

Jing Zhang¹, Linjiajie Fang¹, Kexin Shi¹, Wenjia Wang^{2,1}, Bing-Yi Jing³

¹Hong Kong University of Science and Technology, Hong Kong, China
 ²Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
 ³Southern University of Science and Technology, Shenzhen, China

NEURAL INFORMATION

• Problem

- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Overestimation of Q-value in offline RL

action a

Divergence caused by Q-value overestimation

• Overestimated Q function assume the unknow action correspond to highreward actions. Then the learning policy prioritizes these risky actions. The accumulate of bootstrap error will lead to a failure.

–––– Optimal route

Divergence route by learning policy

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Overestimation on OOD region=high uncertainty of estimation

• Pessimistic Q-value function by the Q-value uncertainty

 Challenge of estimate Q-value uncertainty
 Being too conservative in Q-value estimation

- Fail to approach a tight lower confidence bound
- Mimic the Q-value of the behavior policy

- Behavior policy and learning policy share the same uncertainty set over actions.
- The core concept revolves around learning the distribution of the Q-value of the behavior policy and quantifying uncertainty by bootstrap samples.

QDQ: RL paradigm

Recover Q-value function: <u>uncertainty-aware learning objective.</u>

$$Q_L(s',a') = \frac{1}{\mathcal{H}_Q(a'|s')}Q(s',a')\mathbf{1}_{(a'\in\mathcal{U}(Q))} + \beta Q(s',a')\mathbf{1}_{(a'\notin\mathcal{U}(Q))}.$$
$$\mathcal{H}_Q(a'|s') = \sqrt{V(X_{\epsilon}|(s',a'))}$$

Improve the learning policy.

 $\mathcal{L}_{adv}(Q)$

$$\mathcal{L}_{\phi}(\pi) = \max_{\phi} \left[\mathbb{E}_{s \sim \mathbb{P}_{\mathcal{D}}(s), a \sim \pi_{\phi}(\cdot|s)} [Q_{\theta}(s, a)] + \gamma \mathbb{E}_{a \sim \mathcal{D}}[\log \pi_{\phi}(a)] \right]$$

٠

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments
- Conclusion and Future Work

QDQ: Theoretical Analysis

• Convergence of learned Q-value distribution

Theorem 4.1 (Informal). Under some mildly condition, the truncated Q-value $Q_{\mathcal{T}}^{\pi_{\beta}}$ converge indistribution to the true true Q-value $Q^{\pi_{\beta}}$.

$$F_{Q_{\mathcal{T}}^{\pi_{\beta}}}(x) \to F_{Q^{\pi_{\beta}}}(x), \mathcal{T} \to +\infty.$$
(10)

• Consistency model is suitable for estimating uncertainty

Theorem 4.2 (Informal). Following the assumptions as in [20], $f_{\theta}(x, T|(s, a))$ is L-Lipschitz. We also assume the truncated Q-value is bounded by \mathcal{H} . The action a broadly influences $V(X_{\epsilon}|(s, a))$ by: $\left|\frac{\partial var(X_{\epsilon})}{\partial a}\right| = O(L^2T\sqrt{\log n})\mathbf{1}$.

QDQ: Theoretical Analysis

• Convergence of QDQ algorithm

Theorem 4.3 (Informal). The Q-value function of QDQ can converge to a fixed point of the Bellman equation: $Q(s, a) = \mathscr{F}Q(s, a)$, where the Bellman operator $\mathscr{F}Q(s, a)$ is defined as:

$$\mathscr{F}Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P_{\mathcal{D}}(s')} \{ \max_{a'} [\alpha Q(s',a') + (1-\alpha)Q_L(s',a')] \}.$$
(11)

Theorem 4.4 (Informal). Under mild conditions, with probability $1 - \eta$ we have

$$\left\|Q^{\Delta} - Q^*\right\|_{\infty} \le \epsilon,\tag{12}$$

where Q^{Δ} is learned by the uncertainty-aware loss in Eq.7 ϵ is error rate related to the difference between the classical Bellman operator $\mathcal{B}Q$ and the QDQ bellman operator $\mathcal{F}Q$.

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Experiments

halfcheetah-medium-expert-v2

- index p

100

• Gym-MuJoCo tasks.

hopper-medium-expert-v2 walker2d-medium-expert-v2 120

step

106

step

1.0 1e6	Dataset	BC	AWAC	DT	TD3+BC	CQL	IQL	UWAC	MCQ	EDAC	PBRL	QDQ(Ours)
**	ha-med	42.6	43.5	42.6	48.3	44.0	47.4	42.2	64.3	65.9	57.9	74.1±1.7
	ho-med	52.9	57.0	67.6	59.3	58.5	66.2	50.9	78.4	101.6	75.3	99.0±0.3
	wa-med	75.3	72.4	74.0	83.7	72.5	78.3	75.4	91.0	92.5	89.6	86.9 ± 0.08
	ha-med-r	36.6	40.5	36.6	44.6	45.5	44.2	35.9	56.8	61.3	45.1	63.7±2.9
	ho-med-r	18.1	37.2	82.7	60.9	95.0	94.7	25.3	101.6	101.0	100.6	102.4±0.28
	wa-med-r	26.0	27.0	66.6	81.8	77.2	73.8	23.6	91.3	87.1	77.7	93.2±1.1
	ha-med-e	55.2	42.8	86.8	90.7	91.6	86.7	42.7	87.5	106.3	92.3	99.3±1.7
1.0 1e6	ho-med-e	52.5	55.8	107.6	98.0	105.4	91.5	44.9	112.3	110.7	110.8	113.5±3.5
N	wa-med-e	107.5	74.5	108.1	110.1	108.8	109.6	96.5	114.2	114.7	110.1	115.9 ± 0.2
	Total	466.7	450.7	672.6	684.6	677.4	698.5	437.4	797.4	841.1	759.4	848.0±11.8

Experiments

• AntMaze tasks.

100		80	50
80			40
zed score		60 20 20 20 20 20 20 20 20 20 20 20 20 20	
40 Vormali		ITE HO	20 2
20		20	10
- 0	/	0	0
80 70	antmaze-umaze-diverse-v2	antmaze-medium-diverse-v2	antmaze-large-diverse-v2 60
60			50
- 5 50		80 / C	
3		Pag	0.20
- 8 40			00 <u>10</u>
40 40 30		40 2	Z 20
40 30 20		20	
40 30 20 10		20	10 10

antmaze-medium-play-v2

antmaze-large-play-v2

antmaze-umaze-v2

Dataset	BC	TD3+BC	DT	Onestep RL	AWAC	CQL	IQL	QDQ(Ours
umaze	54.6	78.6	59.2	64.3	56.7	74.0	87.5	98.6±2.8
umaze-diverse	45.6	71.4	53.0	60.7	49.3	84.0	62.2	67.8 ± 2.5
medium-play	0.0	10.6	0.0	0.3	0.0	61.2	71.2	81.5±3.6
medium-diverse	0.0	3.0	0.0	0.0	0.7	53.7	70.0	85.4±4.2
large-play	0.0	0.2	0.0	0.0	0.0	15.8	39.6	35.6±5.4
large-diverse	0.0	0.0	0.0	0.0	1.0	14.9	47.5	$31.2{\pm}4.5$
Total	100.2	163.8	112.2	125.3	142.4	229.8	378	400.1±23.0

Thank you for your attention!