PROCESSING SYSTEMS **Q-Distribution guided Q-learning for offline reinforcement learning: Uncertainty penalized Q-value via consistency model**

Jing Zhang¹, Linjiajie Fang¹, Kexin Shi¹, Wenjia Wang^{2,1}, Bing-Yi Jing³

¹Hong Kong University of Science and Technology, Hong Kong, China ²Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China 3Southern University of Science and Technology, Shenzhen, China

NEURAL INFORMATION

• Problem

- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Overestimation of Q-value in offline RL

action a

Divergence caused by Q-value overestimation

• Overestimated Q function assume the unknow action correspond to highreward actions. Then the learning policy prioritizes these risky actions. The accumulate of bootstrap error will lead to a failure.

Optimal route

Divergence route by learning policy

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Overestimation on OOD region=high uncertainty of estimation

• Pessimistic Q-value function by the Q-value uncertainty

Challenge of estimate Q-value uncertainty

- Being too conservative in Q-value estimation
- Fail to approach a tight lower confidence bound
- Mimic the Q-value of the behavior policy

- Behavior policy and learning policy share the same uncertainty set over actions.
- The core concept revolves around learning the distribution of the Q-value of the behavior policy and quantifying uncertainty by bootstrap samples.

QDQ: RL paradigm

Recover Q-value function: uncertainty-aware learning objective.

$$
Q_{L}(s',a') = \frac{1}{\mathcal{H}_{Q}(a'|s')}Q(s',a')1_{(a'\in\mathcal{U}(Q))} + \beta Q(s',a')1_{(a'\notin\mathcal{U}(Q))}.
$$

= min{ $\alpha\mathcal{L}(Q)_{H}$ + (1 - α) $\mathcal{L}(Q)_{L}$ }.

$$
\mathcal{H}_{Q}(a'|s') = \sqrt{V(X_{\epsilon}|(s',a'))}
$$

Improve the learning policy.

 $\mathcal{L}_{adv}(Q)$

$$
\mathcal{L}_{\phi}(\pi) = \max_{\phi} \left[\mathbb{E}_{s \sim \mathbb{P}_{\mathcal{D}}(s), a \sim \pi_{\phi}(\cdot | s)}[Q_{\theta}(s, a)] + \gamma \mathbb{E}_{a \sim \mathcal{D}}[\log \pi_{\phi}(a)] \right].
$$

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments
- Conclusion and Future Work

QDQ: Theoretical Analysis

• Convergence of learned Q-value distribution

Theorem 4.1 (Informal). Under some mildly condition, the truncated Q-value $Q_{\tau}^{\pi_{\beta}}$ converge indistribution to the true true Q-value $Q^{\pi_{\beta}}$.

$$
F_{Q_{\mathcal{T}}^{\pi_{\beta}}}(x) \to F_{Q^{\pi_{\beta}}}(x), \mathcal{T} \to +\infty.
$$
 (10)

• Consistency model is suitable for estimating uncertainty

Theorem 4.2 (Informal). Following the assumptions as in [20], $f_{\theta}(x,T|(s,a))$ is L-Lipschitz. We also assume the truncated Q-value is bounded by H. The action a broadly influences $V(X_{\epsilon}|(s, a))$ by: $\left|\frac{\partial var(X_{\epsilon})}{\partial q}\right| = O(L^2T\sqrt{\log n})\mathbf{1}.$

QDQ: Theoretical Analysis

• Convergence of QDQ algorithm

Theorem 4.3 (Informal). The Q-value function of QDQ can converge to a fixed point of the Bellman equation: $Q(s, a) = \mathscr{F}Q(s, a)$, where the Bellman operator $\mathscr{F}Q(s, a)$ is defined as:

$$
\mathscr{F}Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P_{\mathcal{D}}(s')} \{ \max_{a'} [\alpha Q(s',a') + (1-\alpha)Q_L(s',a')] \}.
$$
 (11)

Theorem 4.4 (Informal). Under mild conditions, with probability $1 - \eta$ we have

$$
\left|Q^{\Delta} - Q^*\right|\big|_{\infty} \le \epsilon,\tag{12}
$$

where Q^{Δ} is learned by the uncertainty-aware loss in Eq. \overline{Z} ϵ is error rate related to the difference between the classical Bellman operator BQ and the QDQ bellman operator $\mathcal{F}Q$.

- Problem
- Q-Distribution guided Q-learning(QDQ)
- Theoretical Analysis
- Experiments

Experiments

adized s

 40

 $\frac{5}{2}$ 20

 α $0.0 0.2^{\circ}$ 0.4 0.6 0.8 1.0

• Gym-MuJoCo tasks.

halfcheetah-medium-expert-v2 walker2d-medium-expert-v2 hopper-medium-expert-v2 120 100 $B0$ 80 60 60 80 -40 40 AD 20 20 20 α 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 $0.6 - 0.8$ 0.0 0.2° $0.4\qquad0.6$ 1.0 halfcheetah-medium-v2 1e6 hopper-medium-v2 166 walker2d-medium **HANGING** 80 60 80 60 80 840 40 40 $rac{5}{2}$ 20 20α $\begin{tabular}{cc} 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \end{tabular} \begin{tabular}{c} \hline \text{4} & 0.6 & 0.8 & 1.0 \\ \end{tabular} \end{tabular}$ 0.0 0.2 0.4 0.6 0.8 $1,0$ on 0.2 0.4 0.6 hopper-medium-replay-v2 106 walker2d-medium-rep

 80

40

 20

Te6

ideo

 0.0 0.2 D.A 0.6 0.8 1.0

step

BB

 10^{12}

20

 106

0.0 0.2° $0A$ 0.6 0.8 1.0

atep

ted

Experiments

• AntMaze tasks.

Thank you for your attention!