

Robustly overfitting latents for flexible neural image compression

Yura Perugachi Diaz Arwin Gansekoele & Sandjai Bhulai

Neural Image Compression

 $\mathcal{L} = \mathcal{R} + \lambda \mathcal{D}$

- State-of-the-art models based on variational autoencoders with encoder-decoder structure
- Models are trained to minimize the expected rate-distortion (R-D) costs:

Aim: find latent representation with best trade-off between length of bitstream & quality of reconstructed image

In practice: limited capacity when it comes to optimization and generalization

Latent refinement

• Refining only the latents of pre-trained models:

- Improved compression results per image without re-training model
- Variable y is iteratively adapted using differentiable operations test time
 - \circ Aim: Find more optimal discrete latent representation \hat{y}

Minimization problem to be solved for image \mathcal{X} :

 $rgmin\left[-\log_2 p_{\hat{y}}\left(\hat{y}
ight) + \lambda d\left(x,\,\hat{x}
ight)
ight]$

SGA

- In (Yang et al., 2020), propose Stochastic Gumbel Annealing (SGA) to optimize latents
- Soft-to-hard quantization method: quantizes continuous variable v into discrete representation for which gradients can be computed
- The logits are computed with atanh with following function to obtain unnormalized log probabilities:

logits = $(-\operatorname{atanh}(v_L)/\tau, -\operatorname{atanh}(v_R)/\tau)$

- To obtain **probabilities**, a softmax is used over the logits, which gives probability p(y)
- Approximated by Gumbel-softmax distribution

SGA+

SGA

- Computation of *logits* is obtained with atanh
- Looking at probability space atanh:
 - Sub-optimal
 - Gradients tend to infinity when approaching limits of 0 and 1

- Probabilities given by softmax over logits with function of choice
- Probabilities need to be:
 - Monotonic functions
 - Rounding down and up sums up to 1
- We extend SGA with SGA+
 - Contains three methods for logits
 - computation
 - Overcomes issues SGA
 - Can be extended to three class rounding

SGA+

Probability space

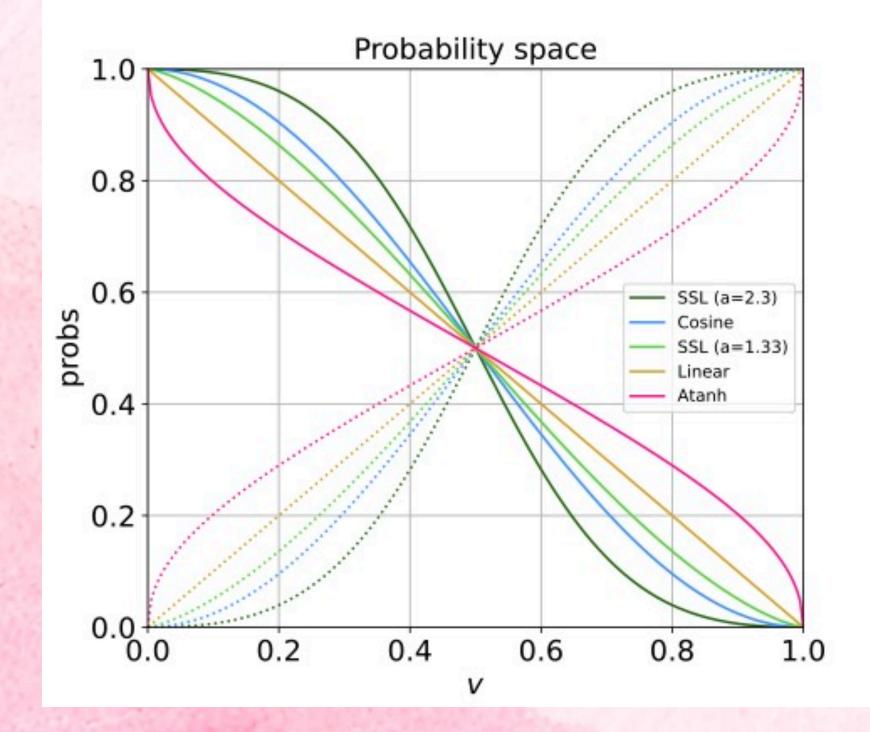


Figure 1: Probability space for several SGA+ methods

- Most natural case since it linearly increases/decreases
- Prevents saturation or vanishing gradients completely
- Robust choice since constant gradients

Cosine:

- Has low gradients in the area where atanh tends to have • gradients that go to infinity for v close to corners

Sigmoid Scaled Logit (SSL): $p(y = \lfloor v \rfloor) = \sigma(-a\sigma^{-1}(v - \lfloor v \rfloor))$

 Interpolates between all possible functions with its hyperparameter a

$p(y = \lfloor v \rfloor) = 1 - (v - \lfloor v \rfloor)$

 $p(y = \lfloor v
floor) = \cos^2\left(rac{(v - \lfloor v
floor)\pi}{2}
ight)$

Experiments

Implementation details

- Two pre-trained hyperprior models to test SGA+ (Cheng et al., 2020)
- Package from CompressAl.
- Models were trained w.:
- $\lambda = \{0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045\}$
- Using Kodak, Tecnick & CLIC dataset

Baseline methods

- - Uniform noise
 - SGA

 Compare against literature methods: Straight-Through Estimator

Overall performance

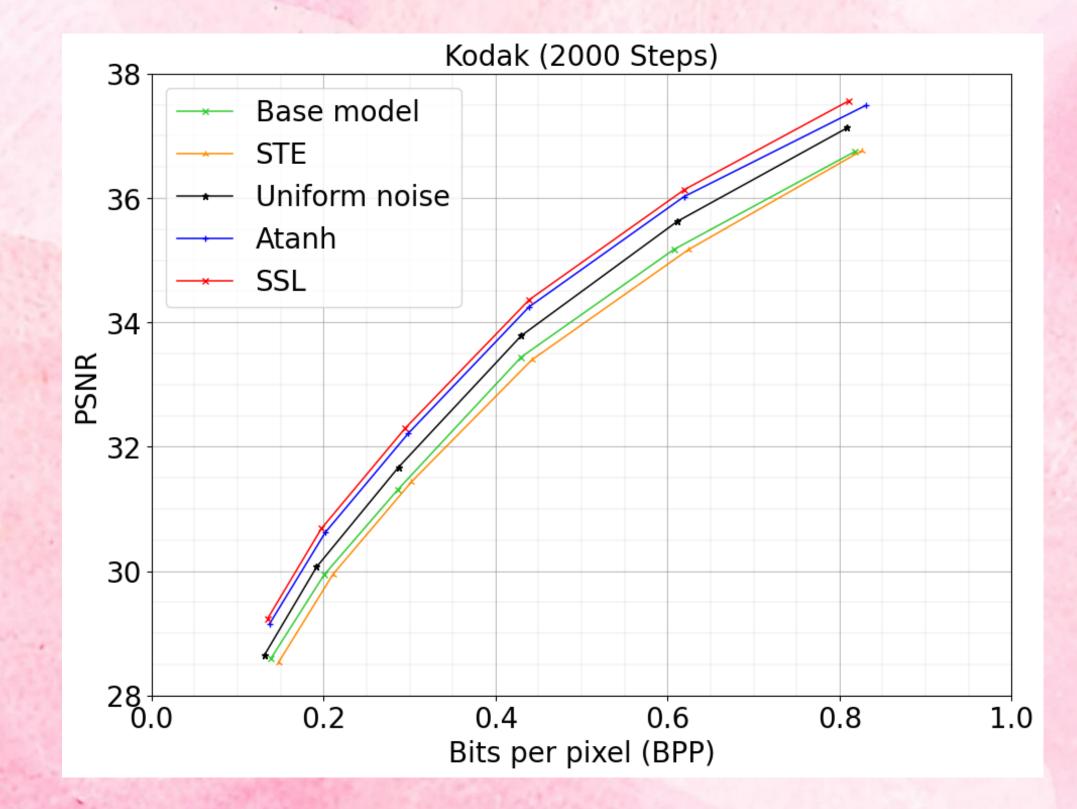


Figure 2) R-D performance for SSL on Kodak

Qualitative results

Original image

SSL (our method)

Temperature sensitivity

Table 1) True R-D loss for different $\tau_{\{\max\}}$ settings

Function τ_{max}	0.2	0.4	0.6	0.8	1.0
$exp \operatorname{atanh}(v)$	0.6301	0.6273	0.6267	0.6260	0.6259
1 - v (linear)	$0.6291\downarrow$	$0.6229\downarrow$	0.6225	0.6222	0.6220
$\cos^2(\frac{v\pi}{2})$	0.6307	0.6233	$0.6194\downarrow$	0.6186	0.6187
$\sigma(-a\sigma^{-1}(v))$	0.6341	0.6233	0.6196	$0.6181\downarrow$	0.6175 ↓
$exp \operatorname{atanh}(v)$	0.0010	0.0044	0.0073	0.0079	0.0084
1 - v (linear)	0	0	0.0031	0.0041	0.0045

Conclusion

Proposed SGA+ a more effective extension for refinement of latents and drop-in replacement for SGA

SSL can interpolate between all proposed methods & outperforms all baselines in terms of R-D trade-off on Kodak, Tecnick and CLIC

Exploration of SGA+ showed that it is more stable under varying conditions