Amnesia as a Catalyst for Enhancing Black Box Attacks in Image Classification and Object Detection

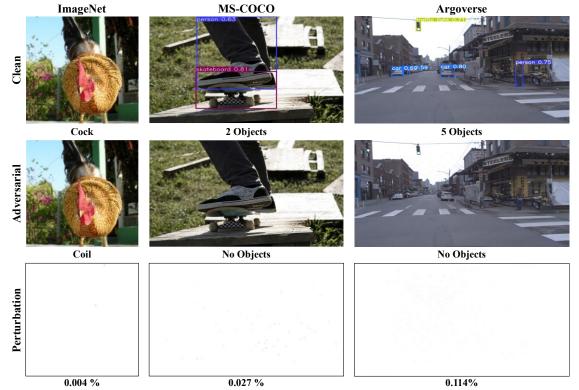
Dongsu Song, Daehwa Ko, Jay Hoon Jung

Korea Aerospace University

Neurips 2024

Introduction

• Adversarial Attack



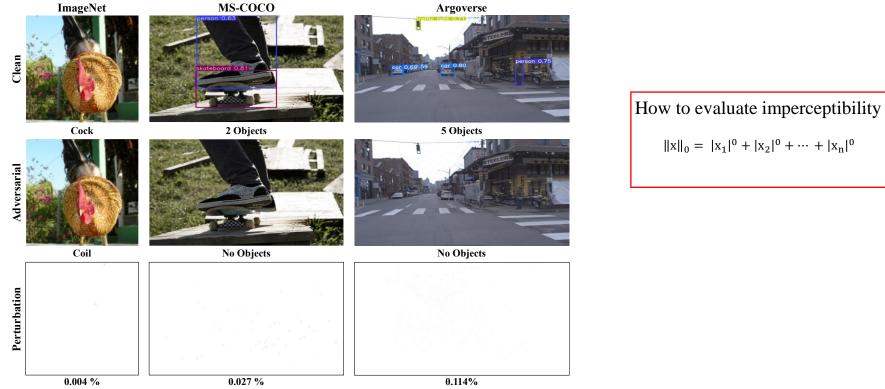
• Adversarial attacks are adding imperceptible noise to clean samples for misleading Deep Neural Networks(DNNs).

KAU

Introduction

• Adversarial Attack

KAU

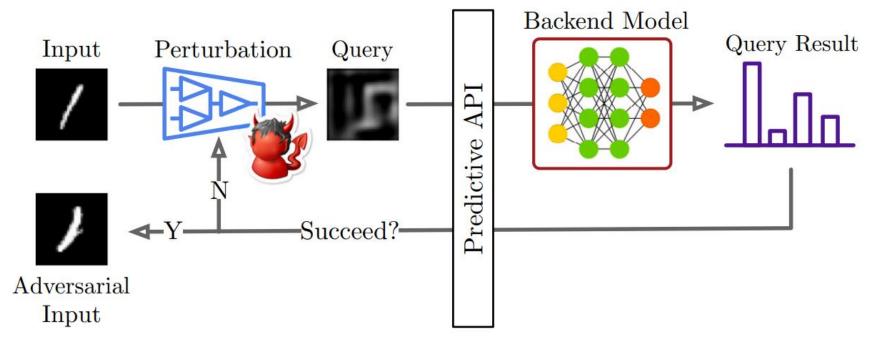


 $||\mathbf{x}||_0 = |\mathbf{x}_1|^0 + |\mathbf{x}_2|^0 + \dots + |\mathbf{x}_n|^0$

• Adversarial attacks are adding imperceptible noise to clean samples for misleading Deep Neural Networks(DNNs).

Introduction

• Query-based attack in Black box



• A query-based attack approach receives limited information (e.g., confidence scores) to generate perturbations in a black-box setting.

Motivations

• Many pixel attacks rely on patches with fixed shapes, leading to increased pixel perturbations. Therefore, we shift our focus from **patch-based** methods to **individual pixels**.

Motivations

- Many pixel attacks rely on patches with fixed shapes, leading to increased pixel perturbations. Therefore, we shift our focus from **patch-based** methods to **individual pixels**.
- Some studies generate adversarial attacks by training Reinforcement Learning (RL) models. However, fully training RL is **inefficient** for queries. Therefore, we tackle this issue by focusing on reward convergence in **Memory**, thereby improving the query efficiency of adversarial example generation.

Motivations

- Many pixel attacks rely on patches with fixed shapes, leading to increased pixel perturbations. Therefore, we shift our focus from **patch-based** methods to **individual pixels**.
- Some studies generate adversarial attacks by training Reinforcement Learning (RL) models. However, fully training RL is **inefficient** for queries. Therefore, we tackle this issue by focusing on reward convergence in **Memory**, thereby improving the query efficiency of adversarial example generation.
- We consider not only **adversarial attack scenarios** but also **real-world scenarios** by simulating the pixel defect issues found in cameras.

Contributions

• **RFPAR**: We introduce the **R**emember and **F**orget **P**ixel Attack using **R**einforcement learning, which enhances query efficiency and achieves low l_0 .

Contributions

- **RFPAR**: We introduce the **R**emember and **F**orget **P**ixel Attack using **R**einforcement learning, which enhances query efficiency and achieves low l_0 .
- Extension task: We extends pixel attacks from image classification to object detection.

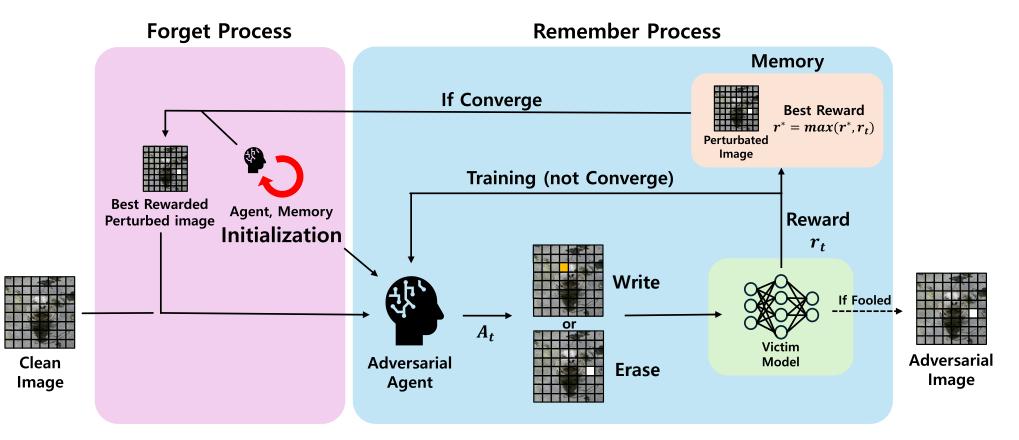
Contributions

- **RFPAR**: We introduce the **R**emember and **F**orget **P**ixel Attack using **R**einforcement learning, which enhances query efficiency and achieves low l_0 .
- Extension task: We extends pixel attacks from image classification to object detection.

• **Resolution Enhancement:** RFPAR supports attacks on high-resolution images(up to 1920x1200).

RFPAR

• RFPAR: Remember and Forget Pixel Attack using Reinforcement learning



WILL

Results in Image classification

Original Image	Delta	Adversarial Image	Original Image	Delta	Adversarial Image
Tench		Coho salmon	Great white shark		Tiger shark
		6] 1] 1
Stingray		Electric ray	Ostrich		Black swan
		R			¥.
House finch		Indigo bunting	Bulbul		Kite
-		**	X		X
Magpie		American coot	Vulture		Black grouse
A					
Great grey owl		Fountain	American bullfrog		Tailed frog

Table 1: The results of adversarial attacks on the ImageNet dataset. Each score represents the mean success rate of the attack, mean L_0 norm and mean the number of queries. In terms of the success rate, a higher value signifies better performance, whereas for the L_0 norm and the number of queries, lower values are indicative of superior performance. The best method is highlighted in bold.

Model	Test accuracy	Attack	Succes rate ↑	$ L_0 \downarrow$	Query
		OnePixel[8]	9.3 %	15	1453
VIT DIAL	81.07 %	ScratchThat[9]	40.9 %	420	9418
VIT-B[24]		Pixle[11]	51.4 %	286	728
		RFPAR(Ours)	64.1 %	211	613
	77.62 %	OnePixel[8]	8.1 %	15	5100
ResNeXt50[25]		ScratchThat[9]	38.1 %	95	1400
Residenti 0[25]		Pixle[11]	89.1 %	538	663
		RFPAR(Ours)	95.3 %	138	442
D. N. W 22CE	80.62 %	OnePixel[8]	12.3 %	15	1358
		ScratchThat[9]	60.6 %	427	8653
RegNetX-32GF[26]		Pixle[11]	73.7 %	276	705
		RFPAR(Ours)	88.4 %	164	484
	77.14 %	OnePixel[8]	14.1 %	15	1248
DenseNet161[27]		ScratchThat[9]	60.6 %	425	8367
Denselvet101[21]		Pixle[11]	82.3 %	243	625
		RFPAR(Ours)	91.7 %	152	464
	73.46 %	OnePixel[8]	14.2 %	15	1128
MNIACNI-40001		ScratchThat[9]	65.3 %	425	8828
MNASNet[28]		Pixle[11]	83.7 %	240	607
		RFPAR(Ours)	95.0 %	150	442
	74.04 %	OnePixel[8]	8.1 %	15	1461
MahilaNat V2001		ScratchThat[9]	51.8 %	420	9293
MobileNet-V3[29]		Pixle[11]	69.6 %	306	769
		RFPAR(Ours)	86.6 %	213	596

KAU

Results in Objective detection

Table 2: Attack Results on Object Detection Models. The subscripts after RFPAR denote a pixel attack rate, α . RM indicates the average percentage of objects removed from the clean image. L_0 represents the average $\|\delta\|_0$. Query denotes the average number of queries made to the victim model. Higher RM, lower mAP, lower L_0 , and lower Query values indicate better performance.

Attacks	YOLOv8[22]				DDQ[33]				
	RM ↑	$mAP\downarrow$	$L_0\downarrow$	Query \downarrow	-	$RM\uparrow$	$mAP\downarrow$	$L_0\downarrow$	Query \downarrow
clean	-	0.398	-	-		-	0.376	-	-
$RFPAR_{0.01}$	0.65	0.218	521	1403		0.60	0.125	391	1450
$RFPAR_{0.02}$	0.70	0.187	955	1427		0.73	0.103	787	1690
$RFPAR_{0.03}$	0.75	0.151	1459	1374		0.76	0.075	1074	1512
$RFPAR_{0.04}$	0.76	0.150	1814	1348		0.80	0.061	1429	1457
$\mathbf{RFPAR}_{0.05}$	0.91	0.111	2043	1254		0.83	0.054	1780	1528



KAU

Email: raister2873@gmail.com

Thank you