

Attention Interpolation of text-to-image Diffusion

NeurIPS 2024

Qiyuan He¹, Jinghao Wang², Ziwei Liu², Angela Yao¹

¹National University of Singapore, ²Nanyang Technology University

01 Background on unconditional deep interpolation

- Target at generating image sequence given two generated images
- Mainly focus on interpolation along the latent space of initial seeds

01 Conditional deep interpolation

• What if we want to interpolate between different conditions?

Interpolation between different initial seeds in latent space

How do we interpolate between different conditions?

02 Motivation for conditional deep interpolation

- Deep interpolation different two conditions is *important* in many applications
- Rarely explored as independent research question

02 Failure on text embedding interpolation

- Text embedding interpolation is implicitly used in many methods for application
- but not roundly evaluated
- The interpolated image does not look "*nice*"?

02 Evaluation on the quality of deep interpolation

• This is not a good interpolation intuitively, but what is exactly a "*good*" or "*bad*" interpolation?

02 Evaluation on the quality of deep interpolation

- Perceptual consistency
 - How direct the transition is?
 - Learned Perceptual Image Patch Similarity (LPIPS) model [1] for perceptual distance

- Perceptual smoothness
 - How smooth the transition is?
 - LPIPS model [1] for perceptual distance

- Fidelity
 - What about the quality of interpolated image?
 - Fréchet Inception Distance (FID) [2] as the quality proxy

04 PAID: Prompt-guided Attention Interpolation of Diffusion

- Fully training-free
- Fused interpolated attention
 - "Interpolated": boost consistency
 - "Fused": boost quality
- Beta prior selection
 - Boost smoothness
- Prompt guidance
 - Enable selecting interpolation path via the third condition

04 PAID Workflow: Fused interpolated attention

- Expand interpolation to **both cross-attention & self-attention**
- Concatenate with original self-attention to enhance fidelity
- Inner / outer interpolation

04 PAID Workflow: Beta prior selection

- Beta prior is good for three reasons:
 - Bell shape: encourage more selection in a small range
 - Uniform distributed point as the lower bound
 - Can make up for the bias towards one side
- We use dynamic selection to auto-fit the alpha and beta of the prior

04 PAID Workflow: Prompt guidance

- Since self-attention already poses spatial constraints
 - Loose semantic constraints in cross-attention
- Inject the guidance prompt in cross-attention

(f) "*Photo of a dog*" to "*Photo of a car*", guided with "A dog driving car" (top), "A car with dog furry texture" (middle), and "A toy named dog-car" (bottom).

05 Experiment: Ablation Study

attention interpolation

Fused interpolated attention

Fused interpolated attention + Beta prior selection

05 Experiment: Qualitative results

05 Experiment: Quantitative Results

- Boost three evaluation metrics by a large margin
 - Especially consistency & fidelity

Dataset	Method	Smoothness (†)	Consistency (\downarrow)	Fidelity (↓)
CIFAR-10	TEI	0.7531	0.3645	118.05
	DI	0.7564	0.4295	87.13
	AID-O	0.7831	0.2905*	51.43*
	AID-I	0.7861*	0.3271	101.13
LAION-Aesthetics	TEI	0.7424	0.3867	142.38
	DI	0.7511	0.4365	101.31
	AID-O	0.7643	0.2944*	82.01*
	AID-I	0.8152*	0.3787	129.41

Experiment: Human study

• Dominantly preferred by human evaluation

Interpolation method	Near Object	Far Object	Scene	Object+Scene
TEI	8.75%	1.16%	0%	1.26%
AID-I	53.75%	50%	45.2%	45.57%
AID-O	36.25%	46.5%	50%	51.90%
Hard to determine	1.25%	2.32%	4.76%	1.26%

"A corgi"

From *image* to [text + image]

"A statue is reading"

From *text* to *[text + image]*

(b) "A statue is running." + global reference

Compositional Generation

Figure 5: Results of image editing control. Our method boosts the controlling ability over editing. The first row of (a) and (b) is generated by P2P + AID while the second row is P2P + TEI.

Control the scale of image prompt

(c) "A boy is smiling." + composition reference

06 Summary

Github Repo →,∔

- We formulate a problem called conditional deep interpolation and propose corresponding evaluation metric
- We analyze the behaviour of attention interpolation and tackle the formulated problem by a training-free method PAID
 - \circ Interpolated attention \rightarrow consistency
 - \circ Fused interpolated attention \rightarrow fidelity
 - \circ Beta prior \rightarrow smoothness
 - \circ Prompt guidance \rightarrow one-to-many answers
- This approach provides stronger control ability on various application
 - Text-to-Text: compositional generation
 - Image-to-[Text+Image]: image editing
 - Image-to-Image: image morphing
 - Text-to-[Text+Image]: image-control generation