



# **Taming Generative Diffusion Prior for Universal Blind Image Restoration**

Siwei Tu<sup>1</sup>, Weidong Yang<sup>1,†,</sup> Ben Fei<sup>2,†</sup>

<sup>1</sup> Fudan University
 <sup>2</sup> Chinese University of Hong Kong
 <sup>†</sup> Corresponding author

### Research Background

- The original image *x* often undergoes quality degradation during capture, transmission, compression, and other processes, resulting in a degraded image *y*.
- The process of quality degradation can be expressed as y = D(x), where *D* represents the degradation function.
- Image restoration tasks aim to restore the degraded image *y* to original *x*. It can be categorized into linear and blind problems.
- The latter necessitates the restoration of images when the

degradation function remains unknown.





## Motivation-Setting Limitation of Guidance Scale

### **Existing setting methods:**

- Previous models, such as GDP<sup>1</sup>, guidance scale is set as hyperparameter via manual specification.
- For diverse tasks, manual experimentation was required, and guidance scale are fixed across varying datasets and time steps.

#### Limitation of setting as a fixed hyperparameter:

- The proper value varies from different modes of degradation, data, and diffusion steps;
- Larger values will result in the emergence of ore textures, whereas smaller values may lead to a loss of details.



Degraded ImageModel OutputGround True• Fixed guidance scale value 80000 (Larger)





return  $x_0$ 



[1] Fei B, Lyu Z, Pan L, et al. Generative diffusion prior for unified image restoration and enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9935-9946.

### Motivation-Setting Limitation of Degradation Modes

• For linear reverse problems:



• Can only address problems where the degenerate function is known, yet lacks the capability to simulate and construct it;

For instance, in deblurring tasks, the blur kernel is required to be given rather than estimating it.

- For blind problems:
  - GDP tackles blind image restoration by only one parameter f, which limits its application in more complex degradation tasks.
  - When dealing with tasks involving mixed degradation, it can only resolve two types of degradation mixtures in a predetermined sequence.
    DID D: Dimd Image Destanction Diffusion Model

#### **BIR-D**: Blind Image Restoration-Diffusion Model



### Empirical Formula of Guidance Scale

- A higher probability of  $p_{\theta}(y|x_t)$  indicates that  $x_t$  is more consistent with the degraded image y;
- Performing Taylor expansion around  $x = \mu$  and take the first two terms:

 $\log p_{\theta}(\mathbf{y}|x_t) \approx \log p_{\theta}(\mathbf{y}|x_t)|_{x_t=\mu} + (x_t-\mu)^T \nabla_{x_t} \log p_{\theta}(\mathbf{y}|x_t)|_{x_t=\mu} = (x_t-\mu)^T \cdot g + C_1$ 

• By combining the heuristic approximation formula:  $\log p(y|x_{t-1}) = -\log p_{\theta}(y|x_t) - sL(D(x_t), y)$ , it can be obtained that: (Taking *K* to replace  $\log p_{\theta}(y|x_t)$ )

$$(x_t - \mu)^T \cdot g + C_1 = -\log K - s L(D(x_t), y);$$

- Simplifying it, we can get :  $s = f(x_t, y, D) = -\frac{(x_t \mu)^T \cdot g + C_1 + \log K}{L(D(x_t), y)};$
- Eliminating the noise introduced from  $x_t$  within the equation:

$$\tilde{x}_0 = \frac{1}{\sqrt{\alpha_{\rm t}}} (x_t - \sqrt{1 - \overline{\alpha_{\rm t}}} \cdot \varepsilon_{\rm t})$$



- Finally get the empirical formula of guidance scales =  $f(\tilde{x}_0, y, D) = -\frac{(x_t \mu)^T \cdot g + C_1 + \log K}{L(D(\tilde{x}_0), y)}$ ;
- Guidance scale is adaptively updated at every reverse steps.

### Optimizable Convolutional Kernel and Reconstruction Loss

• Utilizing optimizable convolutional kernel  $D_t^{\varphi}$  to simulate and construct the degradation function, the parameter  $\varphi$  is updated at every reverse steps.

NEURAL INFORMATION PROCESSING SYSTEMS

- Reconstruction loss L is set with the purpose of measuring the distance between the  $\tilde{x}_0$  after the degradation and degraded image y.
  - The gradient of the distance metric L with respect to  $\tilde{x}_0$  is employed for sampling  $x_{t-1}$ ;
  - The gradient of the distance metric L with respect to parameter  $\varphi$  is employed for updating the convolutional kernel.



• Flow-chart of BIR-D

### > Algorithm



Algorithm 1: Unconditional diffusion model with the guidance of degraded image y, given a diffusion model noise prediction function  $\epsilon_{\theta}(x_t, t)$ .

Input: Degraded image y, degradation function D composed of optimized convolutional kernels K with parameters φ and mask M with parameters φ, learning rate l, distant measure L.
 Output: Output image x<sub>0</sub> conditioned on y.









The results of blind face restoration task on LFW and WIDER dataset.



Task Input, Output, and Ground Truth Comparison for Blind Image Restoration.





- To verify the effectiveness of optimizable convolutional kernel and adaptive guidance scale through metrics comparison on LOL and LoLi-Phone datasets.
- BIR-D outperformed other models in all indicators,

| Methods | Dynamic Update |                | LOL   |      |        |              |             | LoLi-Phone |      |
|---------|----------------|----------------|-------|------|--------|--------------|-------------|------------|------|
|         | Kernel         | Guidance Scale | PSNR  | SSIM | LOE    | FID          | PI          | LOE        | PI   |
| Model A | ×              | ×              | 8.96  | 0.46 | 210.88 | 113.36       | 8.24        | 110.05     | 8.36 |
| Model B | ×              | $\checkmark$   | 9.58  | 0.48 | 203.83 | 102.47       | 7.90        | 102.55     | 8.25 |
| Model C | $\checkmark$   | ×              | 14.35 | 0.54 | 113.56 | 82.14        | 5.23        | 75.34      | 7.94 |
| BIR-D   | $\checkmark$   | $\checkmark$   | 14.52 | 0.56 | 105.42 | <b>68.98</b> | <b>4.87</b> | 72.83      | 6.12 |

#### **Ablation Study**



- The dynamic adjustment of optimizable parameters within the convolutional kernel equips the model with the . capability to construct and simulate unknown degradation functions;
- The fixed convolutional kernel parameters prevents the model from providing accurate "guidance" during the • diffusion steps.
- The adaptive guidance scale not only enhances the practicality of the model but also ensures greater stability in its • outputs, thereby preventing the blurring of certain image results that may arise from biased guidance scale.



**Degraded Image** 



**Output of Fixed Kernel** 

**BIR-D** Output

**Degraded Image** 



**Output of Fixed Guidance Scale** 



**BIR-D** Output





NEURAL INFORMATION PROCESSING SYSTEMS

Siwei Tu<sup>1</sup>, Weidong Yang<sup>1,†,</sup> Ben Fei<sup>2,†</sup>

<sup>1</sup> Fudan University
 <sup>2</sup> Chinese University of Hong Kong
 <sup>†</sup> Corresponding author