

Paralinguistics-Aware Speech-Empowered Large Language Models for Natural Conversation

Heeseung Kim¹, Soonshin Seo², Kyeongseok Jeong², Ohsung Kwon², Soyoon Kim², Jungwhan Kim², Jaehong Lee², Eunwoo Song², Myungwoo Oh², Jung-Woo Ha², Sungroh Yoon^{1,†}, Kang Min Yoo^{2,†} ¹Seoul National University, ²NAVER Cloud, [†]Corresponding Authors

Motivation

• Dominant Approach in Existing Spoken Dialog Models: "Cascaded"

- − Combining ASR, Text-based Chatbot, TTS → paralinguistic information in user's speech is lost
- We propose the Unified Spoken Dialog Model (USDM), an **end-to-end** spoken dialog model that is **paralinguistic-aware**.

Overview of USDM

- Constructing USDM follows these three steps:
 - 1. **Pre-training the LLM** (we used the pre-trained Mistral-7B-v0.1¹)
 - 2. Further Training to expand the LLM for speech modality
 - 3. Supervised Fine-tuning for Downstream Tasks (in our work, Spoken Dialog Modeling)

USDM – Speech Tokenization

• **Compressing** speech along the **time axis** and converting it into a **discrete token sequence**.

- Observation: speech tokens used in SeamlessM4T² contain pronunciation and non-verbal cues.
 - A 50Hz token with |V| = 10k (k-means clustering to the intermediate representations of XLS-R³)

Dataset	Class	Guess Acc	Classifier Acc
CREMA-D	Emotion	16.6%	60.8%
TextrolSpeech	Gender	50.8%	83.4%
	Pitch	34.2%	70.9%
	Tempo	63.8%	82.4%
	Energy	38.2%	64.8%

Token Classifier Accuracy Token Classifier Accuracy for Various Classes Related to Non-Verbal Cues

USDM – Unified Speech-Text Pre-training

• To extend a pre-trained LLM to speech modality, we propose an **interleaved sequence processing method** that contains **various relationships between the two modalities**.

USDM – Supervised Fine-tuning on Spoken Dialog & Speech Reconstruction

 Following previous studies⁴, we model spoken responses indirectly through text to leverage the text capabilities of the pre-trained LLM.

Below is a conversation between the user and the agent. Each turn includes the user's its corresponding transcript, along with the agent's response text and the correspondin	speech and g speech
### User speech token < correspond > text token ### Agent text token < correspond > speech token	oss is calculated.

- The generated speech tokens are converted back to audio using a Voicebox-based⁵ tokento-speech reconstruction model.
 - Leveraging the **pronunciation** and **non-verbal cues** in the speech tokens for reconstruction.
 - **Given reference** speech, it additionally utilizes **timbre** information for personalized reconstruction.

Results (1)

• Comparison with **previous spoken dialog models**

Table 1: Human evaluation results of our model and the baselines. We report the MOS and P-MOS scores with a 95% confidence interval.

Method		Overall		Acoustic		
	win	win tie lose M		MOS	S P-MOS	
Ground Truth	45.9%	8.0%	46.1%	4.51 ± 0.05	4.35 ± 0.05	
USDM	_	_	_	4.31 ± 0.07	4.31 ± 0.06	
Cascaded	55.3%	4.9%	39.8%	4.26 ± 0.07	4.22 ± 0.07	
From Scratch	53.3%	7.6%	39.1%	3.71 ± 0.11	3.65 ± 0.10	
SpeechGPT [25]	53.8%	6.9%	39.3%	4.08 ± 0.09	4.04 ± 0.08	

Table 2: GPT-4 evaluation and quantitative results of our model and the baselines.

Method	Semantic					WER	
	win	tie	lose	METEOR	ROUGE-L	STT	TTS
Ground Truth	32.7%	19.6%	47.7%	_	_	_	2.2%
USDM	-	_	_	13.1	15.7	7.4%	2.0%
Cascaded	42.7%	24.6%	32.7%	12.5	15.0	3.8%	1.3%
From Scratch	79.7%	10.1%	10.2%	8.6	10.6	58.1%	64.0%
SpeechGPT [25]	61.0%	13.1%	25.9%	9.9	11.8	12.4%	23.2%

Results (2)

• Ablation studies for pre-training & supervised fine-tuning

Table 3: Results of the ablation studies on the pretraining and fine-tuning schemes. For PPL, we report the average PPL for each modality across the six combinations described in the text.

	Method	Pretraining		Spoken Dialog Modeling			
		Text PPL	Unit PPL	STT WER	TTS WER	METEOR	ROUGE-L
Pre-training	Ours Setup 1 Setup 2 Setup 3	$\begin{array}{c} 6.886 \\ 14.485 \\ 31.679 \\ 21.392 \end{array}$	$\begin{array}{c} 4.813 \\ 5.261 \\ 5.619 \\ 5.146 \end{array}$	$7.4\% \\ 57.8\% \\ 11.2\% \\ 7.3\%$	$2.0\% \\ 82.1\% \\ 2.5\% \\ 2.0\%$	$13.1 \\ 8.9 \\ 12.5 \\ 12.7$	$15.7 \\ 10.6 \\ 15.1 \\ 15.4$
Fine-tuning	$S1 \rightarrow S2$	—	—	_	-	6.5	7.7

Conclusion

- USDM is a spoken dialog model that considers not only **content** but also **non-verbal elements**.
- The proposed cross-modal pre-training proved effective for spoken dialog and serves as a foun dational model capable of handling various tasks through fine-tuning with diverse data and te mplates tailored to specific contexts.

Project Page

Code & Checkpoints

References

- 1. Jiang, Albert Q., et al. "Mistral 7B." *arXiv preprint arXiv:2310.06825* (2023).
- Barrault, Loïc, et al. "SeamlessM4T-Massively Multilingual & Multimodal Machine Translation." *arXiv preprint arXiv:2308.11596* (2023).
- Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu, Q., Goyal, N., ... & Auli, M. (2021). XLS-R: Self-supervised cross-lingual speech representation learning at scale. *arXiv preprint arXiv:2111.0929* 6.
- 4. Zhang, Dong, et al. "Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities." *arXiv preprint arXiv:2305.11000* (2023).
- 5. Le, Matthew, et al. "Voicebox: Text-guided multilingual universal speech generation at scale." *A dvances in neural information processing systems* 36 (2024).

