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Motivation and Problem Setting



Optimal Transport in Machine Learning

• Optimal Transport (OT) provides a mathematical framework
for measuring and minimizing the difference between two
probability distributions.

3



Optimal Transport in Machine Learning

• Domain Adaptation: Matching distributions from source
and target domains.

• Generative Model: Modeling data distributions, especially in
generative adversarial networks (GANs).

• Metric: Used to define Wasserstein distances in deep learning
and other fields.

• ...

4



Importance of Entropic-Regularization

• Entropic Regularization introduces an entropy term to the
standard OT problem, turning the original problem into a
smooth approximation.
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Importance of Entropic-Regularization

• The regularization ensures that the optimal transport plan is
computationally feasible for large-scale problems, at the cost
of some accuracy and optimality.
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Formulation of Entropic-Regularized OT

• Objective function
minT∈Π(a,b)⟨T , M⟩ − ηh(T )

• M is the cost matrix.
• Π(a, b) = {T ∈ Rn×m : T1m = a, T T 1n = b, T ≥ 0}.
• h(T ) =

∑
i
∑

j Tij(1 − log Tij).
• η controls the level of regularization (smoothness).
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Safe and Sparse Newton Method



Newton’s Method for Entropic-Regularized OT

• Advantages
• Quadratic Convergence: Newton’s method converges quickly

for smooth problems, if the initial value is sufficiently close to
the optimum.

• Limitations
• Sensitivity to Initial Conditions: The algorithm can struggle

with ill conditioned problems and poor initial guesses.
• Computationally Expensive: Calculating Hessians and

solving large linear systems may become prohibitively expensive
for very high-dimensional problems.
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Algorithm 1: Sparsifying the Hessian Matrix

• Fundamental Reason For Sparsification: Sparse linear
systems solve Newton directions faster.

• Good Approximation: The density of the Hessian matrix H
originates from the approximately sparse entropic-regularized
optimal transport plan T . We sparsify it using Algorithm 1,
obtaining the sparse Hessian matrix Hδ, and theoretically
prove that it provides a good approximation.
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Algorithm 2: SSNS

• Positive Definite: Ensuring the sparsified approximate
Hessian matrix Hδ remains positive definite, thus safe to
compute pk
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Global convergence

Theorem (Global convergence guarantee)
Let {xk} be generated by Algorithm 2, and x∗ is an optimal point.
Then either Algorithm 2 terminates in finite iterations, or xk
satisfies limk→∞∥g(xk)∥ = 0, limk→∞∥xk − x∗∥ = 0.

• Convergence from Any Initial Point: Starting from any
arbitrary initial point x0 the iterates generated by the
algorithm converge to the unique global optimum x∗.

• End-to-End Efficiency: The method eliminates the need for
warm initialization with the Sinkhorn algorithm, enabling a
more streamlined, end-to-end process.
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Quadratic local convergence rate

Theorem (Quadratic local convergence rate)
Fix ξk ≡ 1. Then there exists an integer K ′ > 0 and a constant
L > 0 such that for all k ≥ K ′,

∥xk+1 − x∗∥ ≤ L∥xk − x∗∥2.

• Convergence Rate Comparable to Newton: SSNS achieves
a quadratic local convergence rate that aligns with the
Newton method using a genuine and dense Hessian matrix.
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Numerical Experiments



Numerical Experiments

• Iteration v.s. Log10 marginal errors
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Numerical Experiments

• Runtime v.s. Log10 marginal errors
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Numerical Experiments

• The experimental results show that SSNS has advantages in
both the number of iterations and runtime in most scenarios.
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Numerical Experiments

• More experiments are in the article.
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Summary

• We propose a Hessian sparsification scheme with strict control
over approximation error.

• Based on this scheme, we prove that the sparsified Hessian
matrix is always positive definite, enabling a safe Newton-type
method that avoids singularities.

• The algorithm is easy to implement, avoids most
hyperparameter tuning, and is included in the RegOT Python
package.

• We provide rigorous global and local convergence analysis for
the algorithm, which is lacking in current literature.
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