Safe and Sparse Newton Method for Entropic-Regularized Optimal Transport

Zihao Tang, Yixuan Qiu

Shanghai University of Finance and Economics

NeurIPS 2024 @ Vancouver, December 11

[Motivation and Problem Setting](#page-2-0)

[Safe and Sparse Newton Method](#page-8-0)

[Numerical Experiments](#page-14-0)

[Motivation and Problem Setting](#page-2-0)

• Optimal Transport (OT) provides a mathematical framework for measuring and minimizing the difference between two probability distributions.

- **Domain Adaptation:** Matching distributions from source and target domains.
- **Generative Model:** Modeling data distributions, especially in generative adversarial networks (GANs).
- **Metric:** Used to define Wasserstein distances in deep learning and other fields.

• ...

• Entropic Regularization introduces an entropy term to the standard OT problem, turning the original problem into a smooth approximation.

• The regularization ensures that the optimal transport plan is computationally feasible for large-scale problems, at the cost of some accuracy and optimality.

• Objective function

$$
\min_{\mathcal{T} \in \Pi(a,b)} \langle \mathcal{T}, \mathcal{M} \rangle - \eta \mathit{h}(\mathcal{T})
$$

- \blacksquare M is the cost matrix.
- $\Pi(a, b) = {T \in \mathbb{R}^{n \times m} : T1_m = a, T^T1_n = b, T ≥ 0}.$

$$
\bullet \quad h(\mathcal{T}) = \sum_i \sum_j T_{ij} (1 - \log T_{ij}).
$$

• *η* controls the level of regularization (smoothness).

[Safe and Sparse Newton Method](#page-8-0)

- Advantages
	- **Quadratic Convergence:** Newton's method converges quickly for smooth problems, if the initial value is sufficiently close to the optimum.
- Limitations
	- **Sensitivity to Initial Conditions:** The algorithm can struggle with ill conditioned problems and poor initial guesses.
	- **Computationally Expensive:** Calculating Hessians and solving large linear systems may become prohibitively expensive for very high-dimensional problems.

Algorithm 1: Sparsifying the Hessian Matrix

- **Fundamental Reason For Sparsification:** Sparse linear systems solve Newton directions faster.
- **Good Approximation:** The density of the Hessian matrix H originates from the approximately sparse entropic-regularized optimal transport plan T. We sparsify it using Algorithm 1, obtaining the sparse Hessian matrix H*δ*, and theoretically prove that it provides a good approximation.

Algorithm 1 Sparsifying the Hessian matrix.

Input: Dual variable vector $x = (\alpha^T, \tilde{\beta}^T)^T$, threshold parameter $\delta > 0$ **Output:** Sparsified Hessian matrix H_{δ} 1: Initialize a zero matrix $\Delta \in \mathbb{R}^{n \times m}$ and compute $T = \tau(\alpha, \beta)$ 2: for $j = 1, 2, ..., m - 1$ do 3: $\phi \leftarrow \texttt{select_small}(T_{.i}, \delta), \quad \Delta_{.i} \leftarrow \texttt{apply_mask}(T_{.i}, \phi)$ 4: for $i = 1, 2, ..., n$ do 5: $\phi \leftarrow \texttt{select_small}(\Delta_i, \delta), \quad \Delta_i \leftarrow \texttt{apply_mask}(\Delta_i, \phi)$ Density stems from the
optimal transport plan 6: $T_{\delta} \leftarrow T - \Delta$ 7: $H_{\delta} \leftarrow \eta^{-1} \begin{bmatrix} \textbf{diag}(T\textbf{1}_m) & \tilde{T}_{\delta} & \cdots \\ \tilde{T}_{\delta}^T & \textbf{diag}(\tilde{T}^T\textbf{1}_n) \end{bmatrix}$

Algorithm 2: SSNS

• **Positive Definite:** Ensuring the sparsified approximate Hessian matrix H*^δ* remains positive definite, thus safe to compute p_k

Algorithm 2 Safe and sparse Newton method for Sinkhorn-type optimal transport.

Input: Initial point x_0 , parameters $\{\mu_0, \nu_0, c_1, c_2, \kappa\} > 0, \gamma > 1, \rho_0 \in (0, \frac{1}{2}), \varepsilon_{tol} > 0$ **Default values:** $\mu_0 = 1$, $\nu_0 = 0.01$, $c_l = 0.1$, $c_u = 1$, $\kappa = 0.001$, $\gamma = 1$, $\rho_0 = \frac{1}{4}$ **Output:** x_k 1: for $k = 0, 1, 2, ...$ do Compute $q_k = q(x_k)$, $\delta_k = \nu_0 ||q_k||^{\gamma}$ $2:$ 5: For sparse if $||q_k|| < \varepsilon_{tol}$ then $3:$ $4:$ return x_k Compute H_{δ_k} according to Algorithm 1 with $x \leftarrow x_k$ $5:$ 6: For safe Compute $p_k = -(H_{\delta_k} + \mu_k ||g_k||I)^{-1}g_k$ 6: $7:$ Select any $\xi_k \in [c_l, c_u]$ Compute $\rho_k = \frac{f(x_k) - f(x_k + \xi_k p_k)}{m_k(0) - m_k(\xi_k p_k)}, m_k(\cdot)$ is defined in (6) $8:$ $\text{Update } \mu_{k+1} = \begin{cases} 4\mu_k, & \text{if } \rho_k < \rho_0 \\ \max\{\mu_k/2, \kappa\}, & \text{if } \rho_k \ge 1 - \rho_0 \\ \mu_k, & \text{otherwise} \end{cases}$ \mathbf{Q} if $\rho_k > 0$ then $10:$ $11:$ $x_{k+1} = x_k + \xi_k p_k$ $12:$ else $13:$ $x_{k+1} = x_k$

Theorem (Global convergence guarantee) Let $\{x_k\}$ be generated by Algorithm 2, and x^* is an optimal point. Then either Algorithm 2 terminates in finite iterations, or x_k satisfies $\lim_{k\to\infty} ||g(x_k)|| = 0$, $\lim_{k\to\infty} ||x_k - x^*|| = 0$.

- **Convergence from Any Initial Point:** Starting from any arbitrary initial point x_0 the iterates generated by the algorithm converge to the unique global optimum x^* .
- **End-to-End Efficiency:** The method eliminates the need for warm initialization with the Sinkhorn algorithm, enabling a more streamlined, end-to-end process.

Theorem (Quadratic local convergence rate) Fix $\xi_k \equiv 1$. Then there exists an integer $K' > 0$ and a constant $L > 0$ such that for all $k \geq K'$,

$$
||x_{k+1} - x^*|| \le L||x_k - x^*||^2.
$$

• **Convergence Rate Comparable to Newton:** SSNS achieves a quadratic local convergence rate that aligns with the Newton method using a genuine and dense Hessian matrix.

• Iteration v.s. Log10 marginal errors

• Runtime v.s. Log10 marginal errors

• The experimental results show that SSNS has advantages in both the number of iterations and runtime in most scenarios.

• More experiments are in the article.

- We propose a Hessian sparsification scheme with strict control over approximation error.
- Based on this scheme, we prove that the sparsified Hessian matrix is always positive definite, enabling a safe Newton-type method that avoids singularities.
- The algorithm is easy to implement, avoids most hyperparameter tuning, and is included in the **RegOT** Python package.
- We provide rigorous global and local convergence analysis for the algorithm, which is lacking in current literature.

