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p Urban Knowledge Graph (UrbanKG)

n Organize urban entities into a multi-relational heterogeneous graph to model 

intricate relationships and semantics.

n UrbanKG provides critical knowledge for various knowledge-enhanced urban 

downstream tasks.

Background

An illustrative UrbanKG example Urban downstream tasks 1



p Previous UrbanKG Construction (UrbanKGC) Studies

n Manually designed methods: 1) rely on deep understanding of the 

application domain; 2)labor-intensive.

n Language model based methods: 1) rely on annotated corpus; 2) need model 

retraining.

p Motivation

n Leverage the remarkable zero-shot capability of LLM in autonomous domain-

specific task completion.

n Construct tailored LLM agent compatible with various UrbanKGC tasks to 

address the aforementioned limitations in UrbanKGC. 

Research Gap
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p How to adapt LLMs for UrbanKGC?

n The gap between natural language processing corpus for 

training LLMs and the domain-specific corpus in urban domain.

n Urban text data is usually heterogeneous and contains 

multifaceted urban knowledge (e.g., spatial, temporal, and 

functional aspects).

n LLMs may require a tailored alignment to understand 

heterogeneous urban relationships to extract these urban 

relations accurately.

Challenges
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p How to improve the capacity of LLMs for UrbanKGC?

n The effectiveness of LLMs for UrbanKGC is restricted by their 

feeble numerical computation capacity. 

n Lead to disability in complex geospatial relationship 

extraction.

n To improve the geospatial computing and reasoning ability 

(e.g., invoking external tools for calculation) of LLMs to satisfy 

the UrbanKGC task requirement.

Challenges
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p Overview

n A unified LLM agent framework for automatic UrbanKG construction.

n Three steps: 1) urban data collection; 2) UrbanKGC agent construction; 3) 

Inference on UrbanKGC task.

The Proposed Method: UrbanKGent
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p Data Collection

n Acquire geographic data and text data for two large cities New York City and 

Chicago.

n Geographic and text data: Area-Of-Interest (AOI), Road network, Point-Of-

Interest (POI), Review and Web page.

The Proposed Method: UrbanKGent
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p Quantitative Analysis on UrbanKGC task

n UrbanKGC tasks:  1) Relational Triplet Extraction (RTE; 2)Knowledge Graph 

Completion (KGC). 

n Limited capacity of LLM to understand heterogenous urban relationship.

n Disability of LLMs in geospatial computing and reasoning.

The Proposed Method: UrbanKGent
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p UrbanKGC Agent Construction

n Knowledgeable instruction generation for aligning LLM to UrbanKGC tasks;

n Tool-augmented iterative trajectory refinement to enhance and refine 

generated trajectory;

n Hybrid Instruction Fine-tuning for cost-effectively completing UrbanKGC tasks.

The Proposed Method: UrbanKGent
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p Knowledgeable Instruction Generation

n Heterogeneity-aware instruction generation for relational triplet extraction.

• Sequential entity recognition, relation extraction and triplet extraction.

n Geospatial-infused instruction generation for knowledge graph completion.

The Proposed Method: UrbanKGent
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p Tool-augmented Iterative Trajectory Refinement

n Trajectory generation: distill from GPT-4.

n Geospatial tool invocation for trajectory augmentation.

• Distance calculator, geohash encoder, …

n Iterative trajectory self-refinement to ensure trajectory 

quality.

• Trajectory updater and verifier

The Proposed Method: UrbanKGent
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p Hybrid Instruction Fine-Tuning

n Utilize distilled trajectories to fine-tune a smaller 

open-source LLM for faster inference speed and 

lower cost.

n Mixture training on two UrbanKGC tasks (i.e., 

relational triplet extraction and knowledge graph 

completion).

The Proposed Method: UrbanKGent
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p Dataset, Baselines and Metric

n Construct the RTE and KGC datasets for fine-tuning and validation;

n Five types of paradigms: 1) Pretrained language model methods; 2) LLMs-

based zero-shot reasoning methods; 3) LLMs-based In-context learning 

methods; 4) Vanilla fine-tuning methods; 5) UrbanKGent Inference method;

n Evaluations: employ accuracy as metric on both of human evaluation and 

GPT evaluation.

Experiments

11



p Main Results

n UrbanKGent-13B/8B/7B outperforms 

all thirty-one baseline models on two 

UrbanKGC datasets.

n UrbanKGent inference pipeline 

perform slightly worse than the vanilla 

fine-tuning method, but better thant

zero-shot reasoning and In-context 

learning paradigms.

Experiments
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p Main Results

n Fine-tuning LLMs could obtain better performance compared with zero-shot 

reasoning and In-context learning paradigms.

n In-context-learning is limited and even leads to degradation in smaller LLMs 

(e.g., Llama-2-7B).

Experiments
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p Efficiency and Complexity Analysis

n Lower inference speed in latency and reduce the cost by roughly 20 times.

n Compared with ZSL, ICL , VFT, and UrbanKGent Inference, UrbanKGent can 

incorporate extra urban knowledge, invoke external tools and iteratively self-refine 

to help better complete UrbanKGC tasks.

Experiments
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p Agent Application

n Use 1/5 data for constructing the UrbanKGs with the same scale, and even 

expanding the variety of relationships to a thousand times the original types.

n UrbanKGent agent family consists of 13B/8B/7B is released in Hugging Face.

Experiments
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p Conclusion

n Propose the first automatic UrbanKG construction agent framework.

n Release the UrbanKGent agent family, with lower latency and cost compared with 

GPT-4 for UrbanKG construction.

p Limitation

n Lack of further application demonstration for constructed UrbanKG, the GPT-based 

self-evaluation methods is cost-intensive and inconsistent.

p Future Work

n Derive extra image-modality data to further enrich UrbanKGC.

Conclusion and Future Work
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Contact us if you have further questions. 
yning092@connect.hkust-gz.edu.cn

Thank You!
Q & A

Our Github and Hugging Face repository are continuously updating!
https://github.com/usail-hkust/UrbanKGent

https://huggingface.co/usail-hkust

mailto:yning092@connect.hkust-gz.edu.cn
https://github.com/usail-hkust/UrbanKGent
https://huggingface.co/usail-hkust/UrbanKGent-7B

