Graphcode: Learning from multiparameter persistent homology using graph neural networks

Michael Kerber, Florian Russold

November 11, 2024

Graphcode

Graphcode

Using Graphcodes as Features for Machine Learning

- **Input:** Graphcode undirected graph with (b, d) vertex labels.
- Feed Graphcode into Graph (ATtention) neural network.
- Solution Apply slicewise max pooling to vectorize the graph.
- Feed this vectorization to standard neural network.

Homology Inference Experiments

Task: Predict H_1 of a random shape configuration consisting of disks and annuli from a point sample with noise.

Shape configuration, 2 annuli, 3 disks

Sample from shape configuration with uniform noise

	MP-I	MP-L	P-I	GRIL	MP-HSM-C	GC	GC-NE
Accuracy[%]	64.1±4.7	37.2±1.5	43.6±2.2	74.9±2.7	57.0±2.3	86.9±1.4	82.8±1.9
Time[s]	9176	3519	1090	333187	282	95	-

Table: Average test set prediction accuracy of topological descriptors.