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Using Graphcodes as Features for Machine Learning
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1 Input: Graphcode – undirected graph with (b, d) vertex labels.

2 Feed Graphcode into Graph (ATtention) neural network.

3 Apply slicewise max pooling to vectorize the graph.

4 Feed this vectorization to standard neural network.



Homology Inference Experiments
Task: Predict H1 of a random shape configuration consisting of disks and annuli
from a point sample with noise.

Shape configuration, 2 annuli, 3 disks Sample from shape configuration with uniform noise

MP-I MP-L P-I GRIL MP-HSM-C GC GC-NE

Accuracy[%] 64.1±4.7 37.2±1.5 43.6±2.2 74.9±2.7 57.0±2.3 86.9±1.4 82.8±1.9

Time[s] 9176 3519 1090 333187 282 95 –

Table: Average test set prediction accuracy of topological descriptors.


