Barely Random Algorithms and Collective Metrical Task Systems

Romain Cosson Laurent Massoulié

NeurIPS 2024

Ínnía-

Keywords: decision-making, online algorithm,

randomness, collective algorithms

5 mins

Warmup: Zero-sum Games

M be a **cost** matrix in 2-player game

	Cost	Rock	Paper	Scis.		« Pure »	« Barely Random » (k=2)	
ŀ	Rock	0	1	-1	Strategy $x =$	(= (1 0 0))	$\left(rac{1}{2},rac{1}{2},0 ight)$	
	Paper	-1	о	1				
•	Scis.	1	-1	0	Cost	1	0.5	

How does the payoff/cost scales with « barelyness » $k \in \mathbb{N}$?

In the context of real-time games (online algorithms)

09/11/2024

Price of Rent in 1950

Price of Rent in 1980

Price of Rent in 2000

Metrical Task Systems

When should I move? (between jobs, cities, power saving modes ...)

- Metric space (\mathcal{X}, d) , with $|\mathcal{X}| = n$ number of positions.
- Input $\mathbf{c}(\cdot)$: Cost vector $\mathbf{c}(1), \mathbf{c}(2), ... \in \mathbb{R}^{\chi}_+$
- Output $x(\cdot)$: Agent's position $x(1), x(2), \dots \in \mathcal{X}$ or $k \in \mathbb{N}$ (barely random) positions $\in \mathcal{P}_k(\mathcal{X})$
 - With past data $c(\leq t)$
- **Cost** = Cost vector + Movement, i.e., $Cost(x(\cdot), c(\cdot)) = \sum_t c_{x(t)}(t) + d(x(t), x(t+1))$
- **OPT** = Best with hindsight, i.e. **OPT** = $\inf_{x(\cdot)} \text{Cost}(x(\cdot), \mathbf{c}(\cdot))$

Main result

	Deterministic : k = 1	« Barely Random » $k \in \mathbb{N}$	Randomized: $k = \infty$
Comp. Ratio	2 <i>n</i> – 1	$\Theta(\log^2 n)$ if $k \ge n^2$	$\Theta(\log^2 n)$
	[BL2]		[Dubeck et al. 2019-22]

Techniques:

×

physical device with hysteresis:
ratchet (green)+ pawl (purple)

• Idea:

- Transform a fully fractional strategy $y(t) \in \mathcal{P}(X)$
- In a k barely fractional strategy $\mathbf{x}(t) \in \mathcal{P}_k(X)$
- Naïve transform :

$$x(t) = \arg\min_{x \in \mathcal{P}_k(\mathcal{X})} \operatorname{OT}(x, y(t))$$

• Good transform : (Hysteresis!) or (« L1 Wasserstein Prox »)

$$x(t) = \arg\min_{x \in \mathcal{P}_k(\mathcal{X})} \operatorname{OT}(x, y(t)) + \operatorname{OT}(x(t-1), x).$$

The issue (e.g. for k = 2)

y (t)	$\boldsymbol{x}(t)$
(0.76, 0.24)	(1,0)
(0.74, 0.25)	(0.5, 0.5)

Thank you!

And think of Hysteresis to build Robust systems in face of Uncertainty