

Mining and Transferring Feature-Geometry Coherence for Unsupervised Point Cloud Registration

KeZheng Xiong¹, Haoen Xiang¹, Qingshan Xu², Chenglu Wen¹, Siqi Shen¹, Jonathan Li³, Cheng Wang¹

> ¹Xiamen University, China. ²Nanyang Technological University, Singapore. ³University of Waterloo, Waterloo, Canada

Preliminaries

- > What is point cloud registration?
- Point cloud registration estimates a rigid transformation $T = \{R, t\}$ that aligns two point clouds.

$$\min_{\mathbf{R},\mathbf{t}} \sum_{(\mathbf{p}_{x_i},\mathbf{q}_{y_i})\in\mathcal{C}^{\star}} \|\mathbf{R}\mathbf{p}_{x_i} + \mathbf{t} - \mathbf{q}_{y_i}\|^2,$$

 When the two point clouds are acquired at a large distance d such as when d ∈ [5m, 50m], the registration task faces the challenges of low overlap and density variation. Therefore, it is crucial to learn density-invariant features.

Challenges

Challenges:

- Costly pose annotations
- Poor generalizability of supervised methods
- Large-scale and complexly-distributed outdoor LiDAR point.
- Existing Efforts:
- Relying on **overly-strong** geometric assumptions
- Poor quality of pseudo-labels due to inadequate integration of low-level geometric and high-level contextual information.

Suboptimal Performance of Existing Methods

Motivation

> Our **observation** in the feature space

- High-level contextual information **is adept at discovering inliers** from a global perspective of the scene.
- Low-level geometric cues have proven effective in rejecting outliers.

Main Contributions:

- **INTEGER**, a novel teacher-student framework that exploits low-level and high-level information for unsupervised point cloud registration, demonstrating its superior registration performance in complex outdoor environments.
- FCEM and MDS for the teacher and student, respectively, to mine reliable pseudo-labels and learn density-invariant features.
- **ABCont** to mitigate pseudo-label noise and facilitate contrastive learning with anchors for a robust feature space.

- Synthetic Teacher Initialization
- Initialize the teacher by training with synthetic pairs.
- Following **PointContrast**[1] to generate two partially-overlap fragments for each scan.
- Additionally apply **periodic sampling**[2] to remove points periodically with respect to a random center, simulating the **irregular sampling of LiDAR**.

(b) A Sample from nuScenes

- Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 574–591. Springer, 2020.
- 2. Sofiane Horache, Jean-Emmanuel Deschaud, and François Goulette. 3d point cloud registration with multi-scale architecture and unsupervised transfer learning. In 2021 international conference on 3D vision (3DV), pages 1351–1361. IEEE, 2021.

Feature-Geometry Coherence Mining

```
Algorithm 1: Feature-Geometry Clustering
Input: Initial correspondence seed proposals C^0
Compute initial \mathbf{U}^{\mathcal{P}}, \mathbf{U}^{\mathcal{Q}} and anchors \mathcal{A}_+, \mathcal{A}_- with Eq. 1
for i = 1 to max iters do
       Generate unclassified correspondences \mathcal{C}_{U} \leftarrow \text{FeatureMatching}(\mathbf{U}^{\mathcal{P}}, \mathbf{U}^{\mathcal{Q}})
      Select C_{\rm U}^{\text{top-}k} with top-k S_c^+ satisfying S_c^+ > S_c^- based on Eq. 2
      Update \mathcal{C}^i \leftarrow \mathcal{C}^{i-1} \cup \mathcal{C}^{\text{top-}k}_{\text{U}}
                                                                                                     // Anchor-Based Clustering
      Filter \mathcal{C}^i with spatial compatibility to produce \mathcal{C}^i_{\perp}, \mathcal{C}^i_{\perp}
                                                                                                         // Spatial Compatibility
        Filtering
      Update \mathbf{U}^{\mathcal{P}}, \mathbf{U}^{\mathcal{Q}} and \mathcal{A}_+, \mathcal{A}_- with Eq. 1
      if |\mathcal{C}^{i}_{+}| = |\mathcal{C}^{i-1}_{+}| or |\mathcal{C}^{i}_{-}| = |\mathcal{C}^{i-1}_{-}| then
            \mathcal{C} \leftarrow \mathcal{C}^i
             break
return C, A_+, A_-
```


- In the first forward pass, we perform Per-Batch Self-Adaption on the teacher model θ to establish a denoised feature space, yielding a data-specific teacher φ.
- In the second forward pass, the adapted teacher φ and FGCM are used to mine reliable pseudo-labels I, which are then used to train the student, achieving Teacher-Student Knowledge Transfer

Anchor-Based Contrastive Learning (ABCont)

$$\mathcal{L}_{ABCont} = \mathcal{L}_{reg} + \lambda_{corr} \mathcal{L}_{corr},$$

$$\mathcal{C}^{\star}_{+} = \mathcal{C}_{+} \cup \operatorname{sg}(\mathcal{A}_{+}), \ \mathcal{C}^{\star}_{-} = \mathcal{C}_{-} \cup \operatorname{sg}(\mathcal{A}_{-}),$$

$$\mathcal{L}_{\mathrm{corr}} = -rac{1}{n_p} \sum_{i=1}^{n_p} \log rac{\exp(eta_p^i)}{\exp(eta_p^i) + \sum_{j=1}^{n_n} \exp(eta_n^j)},$$

Toy Example for ABCont. Anchor-based methods introduce fewer pairwise relationships and are robust against inevitable label noise.

Mixed-Density Student(MDS)

Challenges:

• The density of LiDAR point clouds varies greatly with the distance to the sensor, posing challenges for matching distance point clouds effectively

Using features from downsampled views for **density-invariant** training

$$\mathcal{L} = \mathcal{L}_{ABCont}^{(\mathcal{P},\mathcal{Q})} + \lambda_1 \mathcal{L}_{ABCont}^{(\mathcal{P}^-,\mathcal{Q}^-)}$$

Experiments

Comparison with SOTAs

Dataset	Method	U	mRR	$RR@d \in$				
2				[5, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)
KITTI	FCGF	_	77.4	98.4	95.3	86.8	69.7	36.9
	FCGF+C	_	84.6	100.0	97.5	90.1	79.1	56.3
	Predator	_	87.9	100.0	97.5	90.1	79.1	56.3
	SpinNet	_	39.1	99.1	82.5	13.7	0.0	0.0
	D3Feat	_	66.4	99.8	98.2	90.7	38.6	4.5
	CoFiNet	—	82.1	99.9	99.1	94.1	78.6	38.7
	GeoTrans.	—	42.2	100.0	93.9	16.6	0.7	0.0
	EYOC	\checkmark	83.2	99.5	96.6	89.1	78.6	52.3
	RIENet	\checkmark	50.7	96.3	72.1	38.2	24.4	22.6
	Ours	\checkmark	84.0	99.5	97.1	89.6	79.6	54.2
nuScenes	FCGF	_	39.5	87.9	63.9	23.6	11.8	10.2
	FCGF+C	_	59.3	96.2	85.1	59.6	35.8	20.0
	Predator	_	51.0	99.7	72.2	52.8	16.2	14.3
	EYOC	\checkmark	61.7	96.7	85.6	61.8	37.5	26.9
	RIENet	\checkmark	47.1	96.5	57.9	36.6	25.8	18.9
	Ours	\checkmark	63.1	97.1	86.9	62.9	39.6	29.4
KITTI	EYOC	\checkmark	55.3	96.2	75.6	58.7	26.6	19.7
\downarrow	RIENet	\checkmark	46.2	83.3	73.2	43.5	19.8	11.1
nuScenes	Ours	\checkmark	62.6	97.5	84.6	62.6	37.8	30.2

Ablation Studies

Methods	tIR@1 st	mRR	$d \in [40, 50)$		
	Epoch	muu	RR	RRE	RTE
Full	81.2	84.0	54.2	1.1	0.54
w/o ABCont	80.3	83.5	53.7	1.3	0.58
w/o GSA	43.3	80.9	50.2	1.7	0.79
w/o FGC	67.6	82.8	52.7	1.4	0.61
w/o MDS	81.2	82.7	52.3	1.3	0.71
w/o S.T.I	71.9	83.7	53.7	1.2	0.55

a) Ablation Study of Proposed Components

Pose	tIR@1 st	Time
Estimators	Epoch	(s)
PointDSC	81.3	1.13
MAC	80.1	28.2
FastMAC	79.3	0.67
SC ² -PCR	<u>81.2</u>	<u>0.75</u>

b) Different Pose Estimators for FGC-

Branch in FCEM

Experiments

Effectiveness of GSA-Branch for Discriminative Features

Feature Similarity Distribution of Inlier/Outlier Correspondences

> Before v.s. After Self-Adaption in GSA-Branch: Point-wise Feature & Correspondence-wise Similarity Distribution indicate that the self-adaption results in more discriminative features.

Thanks

Project Page

github.com/kezheng1204/INTEGER

