

Zero-Shot Vision Models by Label-Free Prompt Distribution Learning and Bias Correcting

Xingyu Zhu, Beier Zhu, Yi Tan, Shuo Wang, Yanbin Hao, Hanwang Zhang

Presented by: Xingyu Zhu xingyuzhu@mail.ustc.edu.com

- Motivation
 Method
- **3. Experiments**
- 4. Contributions

1.Motivation

D Prompts optimization & Pre-trained CLIP

- Text prompts optimization based methods on downstream labeled data has proven effective in improving performance.
 - accuracy of ImageNet from 68.7 to 69.9 with 80 handcraft prompts.
- CLIP model is pre-trained on highly imbalanced Webscale data, it suffers from inherent label bias.
 - ➤ the highest class probability exceeds 0.002, whereas the lowest is below 0.0005.

Biased decision boundary

- A label-Free prompt distribution learning and bias correction framework, dubbed as Frolic
- We employ Gaussian distributions to model the varied visual representations of text prototypes and adaptively fuses these with the original CLIP through confidence matching.
- We develop a bias estimation mechanism, which transitions the sampling process from the pre-training data distribution to a class-conditional sampling from downstream distribution.

Label-Free Prompt Distribution Learning:

Gaussian distribution is effective to model the distribution of the CLIP features, but require extra labeled training data.

$$\mathbb{P}(\mathbf{x}) = \sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}; \mathbf{z}_{j}, \Sigma), \quad \mathcal{N}(\mathbf{x}; \mathbf{z}_{j}, \Sigma) = \frac{1}{\sqrt{(2\pi)^{d} |\Sigma|}} \exp\{-\frac{1}{2}(\mathbf{x} - \mathbf{z}_{j})^{\top} \Sigma^{-1}(\mathbf{x} - \mathbf{z}_{j})\}$$
image data $\{x_{i}\}_{i=1}^{N}$
the class description $\{z_{j}\}_{j=1}^{K}$

$$\mathbf{y} = \operatorname*{argmax}_{j} f_{\mathbf{g}}(\mathbf{x})_{j} = \operatorname*{argmax}_{j} \mathbf{w}_{j}^{\top} \mathbf{x} + b_{j}$$

$$\mathbf{w}_{j} = \hat{\Sigma}^{-1} \mathbf{z}_{j} \quad b_{j} = -\frac{1}{2} \mathbf{z}_{j}^{\top} \mathbf{w}_{j}$$

$$\mathbf{x}_{i} = \Phi_{\mathbf{v}}(x_{i}); \quad \mathbf{z}_{j} = \Phi_{\mathbf{t}}(z_{j}),$$

$$y = \operatorname*{argmax}_{j} f_{\mathbf{c}}(\mathbf{x})_{j} = \operatorname*{argmax}_{j} \mathbf{z}_{j}^{\top} \mathbf{x},$$

zero-shot CLIP

D Prediction Fusion via Adaptive Calibration.:

• Combining the zero-shot predictions with the ones from the learned model can further improve performance.

 $f(\mathbf{x}) = f_{\mathsf{c}}(\mathbf{x}) + \underline{\alpha} f_{\mathsf{g}}(\mathbf{x})$

$$\begin{bmatrix} \operatorname{conf}(f,\tau) = \frac{1}{N} \sum_{i=1}^{N} \max_{j} \operatorname{softmax}(f(\mathbf{x}_{i})/\tau)_{j} \\ \tau_{g} = \operatorname*{argmin}_{\tau_{g}} |\operatorname{conf}(f_{g},\tau_{g}) - \operatorname{conf}(f_{c},\tau_{c})| \end{bmatrix}$$

 $f_{\rm f}(\mathbf{x}) = f_{\rm g}(\mathbf{x})/\tau_{\rm g} + f_{\rm c}(\mathbf{x})/\tau_{\rm c}$

Correcting Pre-training Label Bias:

 $\langle \rangle$

• Pre-training datasets typically exhibit a long-tailed concept distribution, leading to biased performance in zero-shot models

$$f_{\mathsf{d}}(\mathbf{x})_y = f_{\mathsf{f}}(\mathbf{x})_y - \ln \beta_y, \quad \beta_y = \mathbb{P}(y)$$

$$s(\mathbf{x}) = \operatorname{softmax}(f_{\mathsf{f}}(\mathbf{x}))$$
$$\boldsymbol{\beta}^{0} = [1/K, ..., 1/K]^{\top}, \ f_{\mathsf{d}}^{0} = f_{\mathsf{f}}, \ \mathbf{s}_{j}^{0} = \frac{1}{|\mathcal{C}_{j}^{0}|} \sum_{\mathbf{x} \in \mathcal{C}_{j}^{0}} s(\mathbf{x}), \text{ and } S^{0} = [\mathbf{s}_{1}^{0}, ..., \mathbf{s}_{K}^{0}]$$

$$\frac{\|\boldsymbol{\beta}^t - \boldsymbol{\beta}^{t-1}\|_1}{\|\boldsymbol{\beta}^{t-1}\|_1} = \|\boldsymbol{\beta}^t - \boldsymbol{\beta}^{t-1}\|_1 < \epsilon, \quad \|\boldsymbol{\beta}^{t-1}\| = 1 \text{ by definition}$$

D Pipeline of our Frolic & Estimation of β :

Algorithm 1 Pipeline of our Frolic

- 1: **Given**: Unlabeled data $\{\mathbf{x}_i\}_{i=1}^N$, prototypes $\{\mathbf{z}_j\}_{j=1}^K$ and τ_c
- 2: Build $f_{c}(\mathbf{x})_{y} = \mathbf{z}_{y}^{\top}\mathbf{x}$ 3: Compute $\hat{\Sigma} = \hat{M} - \frac{1}{K}\sum_{j}\mathbf{z}_{j}\mathbf{z}_{j}^{\top}$ where $\hat{M} = \frac{1}{N}\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}$
- 4: Compute $\mathbf{w}_j = \hat{\Sigma}^{-1} \mathbf{z}_j, b_j = -\frac{1}{2} \mathbf{z}_j^{\mathsf{T}} \mathbf{w}_j$
- 5: Build $f_{g}(\mathbf{x})_{y} = \mathbf{w}_{y}^{\top}\mathbf{x} + b_{y}$
- 6: Search τ_{g} by Eq. (9) 7: Puild $f_{a}(\mathbf{x}) = f_{a}(\mathbf{x})/\tau$
- 7: Build $f_{\rm f}(\mathbf{x}) = f_{\rm g}(\mathbf{x})/\tau_{\rm g} + f_{\rm c}(\mathbf{x})/\tau_{\rm c}$
- 8: Compute $\hat{\beta}$ by Algorithm 2

9: return $f_{\mathsf{d}}(\mathbf{x}) = f_{\mathsf{f}}(\mathbf{x}) - \ln \hat{\boldsymbol{\beta}}$

Algorithm 2 Estimation of β 1: Given: Unlabeled data $\{\mathbf{x}_i\}_{i=1}^N$, predictor $f_{f}(\cdot)$ and tolerance ϵ . 2: Initialize β^0 , f_d^0 and S^0 by Eq. (13) 3: t = 04: repeat 5: t = t + 16: Update β^t by solving $(S^{t-1} - I)\beta^t = \mathbf{0}$ 7: Update $f_d^t = f_f - \beta^t$ Update S^t from $\mathbf{s}_j^t = \frac{1}{|\mathcal{C}_i^t|} \sum_{\mathbf{x} \in \mathcal{C}_j^t} s(\mathbf{x}),$ 8: where \mathcal{C}_{i}^{t} is assigned by f_{d}^{t} 9: until $\|\boldsymbol{\beta}^t - \boldsymbol{\beta}^{t-1}\|_1 < \epsilon$ 10: return $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta}^t$

D Main Results

Table 1: Comparison of accuracy (%) on 10 datasets for CLIP ViT-B/16 and ViT-L/14.

	Method	Pets	Flowers	Aircraft	DTD	EuroSAT	Cars	Food	SUN	Caltech	UCF	Average
	CLIP [28]	88.9	70.4	24.8	44.3	47.7	65.2	86.1	62.5	92.9	66.7	64.9
	TPT [31]	87.7	68.9	24.7	47.7	42.4	66.8	84.6	65.5	94.1	68.0	65.0
	PromptAlign [30]	90.7	72.3	24.8	47.2	47.8	68.5	86.6	67.5	94.0	69.4	66.8
5	SuS-X-SD 34	90.5	73.8	28.6	54.5	57.4	66.1	86.0	67.7	93.6	66.5	68.4
/1(TDA [15]	88.6	71.4	23.9	47.4	58.0	67.2	86.1	67.6	94.2	70.6	67.5
B	GPT4-Prompt [40]	91.0	74.5	28.0	48.5	48.8	66.8	86.3	65.5	94.6	72.0	67.6
ViJ	CuPL-CLIP [26]	92.0	73.2	27.7	54.3	52.7	66.4	86.2	68.5	94.6	70.7	68.6
,	Frolic	92.9	74.8	31.5	56.1	58.5	69.1	87.2	70.8	95.2	75.2	71.1
	InMaP [27]	92.9	71.8	28.4	48.0	64.1	70.6	87.7	70.5	93.1	74.0	70.1
	+ Frolic	93.6	74.3	31.8	58.0	65.3	71.7	88.2	72.8	95.4	75.9	72.7
	CLIP [28]	93.5	79.3	32.4	53.0	58.0	76.8	91.0	67.5	94.8	74.2	72.0
	TPT [31]	93.6	76.2	31.9	55.2	51.8	77.7	88.9	70.2	95.5	74.9	71.5
4	TDA [15]	93.5	80.5	34.7	56.7	64.1	78.3	90.9	71.5	95.9	76.6	74.2
ViT-L/1	GPT4-Prompt [40]	94.1	81.5	36.3	54.8	54.1	77.9	91.4	70.3	96.2	80.6	73.7
	CuPL-CLIP [26]	94.3	79.8	35.5	62.7	61.2	78.0	91.3	72.4	96.7	75.9	74.7
	Frolic	94.9	82.4	40.0	64.1	66.2	80.8	91.8	74.5	97.2	80.0	77.1
	InMaP [27]	95.2	80.7	37.6	60.2	70.6	82.5	92.2	75.0	94.9	80.4	76.9
	+ Frolic	95.4	81.8	42.1	66.9	71.0	83.5	92.4	77.3	97.3	82.2	78.9

D Main Results

Table 2: Comparison of accuracy (%) on ImageNet and its variants for CLIP ViT-B/16 and ViT-L/14.

	Method	IN	IN-V2	IN-Sketch	IN-A	IN-R	ObjectNet	Average
16	CLIP 28	68.7	62.2	48.3	50.6	77.7	53.5	60.1
	TPT [31]	68.9	63.4	47.9	54.7	77.0	55.1	61.1
	TDA[15]	69.5	64.6	50.5	60.1	80.2	55.1	63.3
	GPT4-Prompt [40]	68.7	62.3	48.2	50.6	77.8	53.7	60.2
·B/	CuPL-CLIP [26]	69.9	64.4	49.4	59.7	79.5	53.7	62.7
ViT-	Frolic	70.9	64.7	53.3	60.4	80.7	56.6	64.4
	InMaP [27]	72.5	62.3	49.4	52.2	79.2	54.5	61.6
	+ Frolic	73.3	63.8	52.9	52.8	79.6	56.4	63.1
	CLIP 28	75.9	70.2	59.7	70.9	87.9	65.5	71.6
	TPT [31]	75.5	70.0	59.8	74.7	87.9	68.0	72.6
-	TDA[15]	76.3	71.5	61.3	77.9	89.8	67.0	73.9
/14	GPT4-Prompt [40]	75.3	70.3	59.9	71.2	87.8	65.7	71.7
ViT-L	CuPL-CLIP [26]	76.2	71.9	60.7	77.9	89.6	65.7	73.6
	Frolic	77.4	72.5	63.1	78.9	90.3	68.7	75.1
	InMaP [27]	79.3	72.1	65.1	62.5	84.8	71.0	72.4
	+ Frolic	79.7	73.1	65.7	64.0	85.9	71.7	73.3

Ablation Study

Table 3: Accuracy (%) of different models on 10-datasets, ImageNet and its five variant datasets.

Model			10-datasets	ViT-B/16 ImageNet	IN-Variants	ViT-L/14 10-datasets ImageNet IN-Variants			
Original CLIP	(1) (2)	${f_{\sf c} \over f_{\sf c} - \lnoldsymbol{eta}}$	65.1 68.4	68.7 69.7	58.5 61.2	72.0 75.1	75.9 76.2	72.3 73.4	
Prompt Distribution Confidence Matching	(3) (4) (5)	$\begin{array}{l} f_{\rm g} \\ f_{\rm c} + f_{\rm g} \\ f_{\rm f} = f_{\rm c}/\tau_{\rm c} + f_{\rm g}/\tau_{\rm g} \end{array}$	68.8 66.3 70.4	69.8 68.9 69.8	61.3 59.1 61.9	74.7 72.5 75.5	76.0 76.1 76.9	73.1 72.4 73.9	
	(6)	$f_{\sf d} = f_{\sf f} - \lnoldsymbol{eta}$	71.1	70.9	63.1	77.2	77.4	77.4	

Ablation Study

Table 4: Comparison of accuracy (%) between our Frolic and other label bias correcting methods.

Model	Pets	Flowers	Aircraft	DTD	EuroSAT	Cars	Food	NUS	Caltech	UCF	ImageNet	Avg.
CLIP 28	89.1	71.4	24.8	44.3	47.7	65.2	86.1	62.5	92.9	66.7	68.7	65.4
TDE [33]	84.1	65.8	27.4	49.8	55.3	60.3	84.6	65.5	91.6	68.2	65.9	65.3
Implicit	91.4	71.4	30.6	54.2	56.8	66.0	86.6	69.5	93.5	72.6	69.8	69.3
Frolic	92.9	74.8	31.4	56.1	58.5	69.1	87.1	70.8	95.1	75.2	70.9	70.9
Oracle Frolic	93.1	77.5	32.2	57.3	59.8	69.8	87.4	71.2	95.7	76.3	71.5	71.9

Ablation Study

Figure 3: Relation between gains and confidence differences.

Figure 4: Convergence of accuracy and ℓ_1 error of on ImageNet.

4.Contributions

- We enhance zero-shot performance by estimating a distribution over prompt prototypes to capture the variance in visual appearances. We demonstrate that this process can be implemented entirely without labels.
- We propose a confidence matching technique that fuses the original CLIP model with a Gaussian distribution-based model to further enhance zero-shot performance.
- We develop an unsupervised method to correct pre-training label bias.
 Unlike existing methods that require access to pre-training data.

Thanks All! Q & A

Presented by: Xingyu Zhu xingyuzhu@mail.ustc.edu.com