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Problem Description

Minimax Problems

We consider unconstrained minimax problems with a finite-sum structure:

min
x

max
y

f(x,y) =
1

n

n∑
i=1

fi(x,y).

Very versatile, and has many ML applications:

• Generative Adversarial Networks

• Consistency Trajectory Models

• Sharpness-aware Minimization

• Computing Optimal Transport Maps

• ...
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Problem Description

Minimax Problems

We consider unconstrained minimax problems with a finite-sum structure:

min
x

max
y

f(x,y) =
1

n

n∑
i=1

fi(x,y).

Denote both min. and max. variables at once by z := (x,y).

The saddle gradient

F (z) =

[
∇x f(x,y)
−∇y f(x,y)

]
is more natural than ∇f in minimax problems.
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Problem Description

The Extragradient Method

The gradient descent-ascent (GDA) method

zk+1 = zk − ηkF (zk) or
xk+1 = xk − ηk∇x f(xk,yk)

yk+1 = yk + ηk∇y f(xk,yk)

already does not work for simple convex-concave problems.

The extragradient (EG) method (Korpelevich, 1976)

wk = zk − ηkF (zk)

zk+1 = zk − ηkF (wk)
or zk+1 = zk − ηkF (zk − ηkF (zk))

on the other hand, works on convex-concave problems.
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Problem Description

Stochastic Extragradient?

Unlike GDA vs EG, the stochastic EG (SEG)

zk+1 = zk − ηkFi(k)(zk − ηkFi(k)(zk))

does not show a clear advantage in convex-concave problems over GDA.

Even if we additionally assume each fi are also convex-concave,

convergence rates typically look something like:

min
k=0,1,...,K

∥Fzk∥2 ≤ O
(

1

poly(K)

)
+ (abs. const.)

* The constant term can be decreased only with strong additional assumptions, such as

for example, increasing the batch size every iteration.
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Problem Description

For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

xk+1 = xk − ηk∇fi(k)(xk), i(k) ∼ Unif({1, . . . , n})

In practice, shuffling based SGD is used.

Random reshuffling (RR): in the kth epoch, a permutation

τk : {1, . . . , n} → {1, . . . , n} is chosen randomly, and

xk
i = xk

i−1 − ηk∇fτk(i)(x
k
i−1), i = 1, . . . , n,

xk+1
0 ← xk

n.
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Problem Description

For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

xk+1 = xk − ηk∇fi(k)(xk), i(k) ∼ Unif({1, . . . , n})

In practice, shuffling based SGD is used.

Flip-flop sampling (FF) (Rajput et al., 2022) goes one step even further in

search for a better sampling scheme: in the kth epoch, a permutation

τk : {1, . . . , n} → {1, . . . , n} is chosen randomly, and

xk
i = xk

i−1 − ηk∇fτk(i)(x
k
i−1), i = 1, . . . , n,

xk
i = xk

i−1 − ηk∇fτk(2n+1−i)(x
k
i−1), i = n+ 1, . . . , 2n,

xk+1
0 ← xk

2n.
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Problem Description

For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

xk+1 = xk − ηk∇fi(k)(xk), i(k) ∼ Unif({1, . . . , n})

In practice, shuffling based SGD is used.

In terms of convergence rates,

• RR is in general faster than with-replacement SGD.

(Ahn et al., 2020; Mishchenko et al., 2020)

• If all fi are quadratic functions then FF is even faster, thanks to the

stochastic error term being smaller. (Rajput et al., 2022)
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Main Results

Our contributions

• Stochastic EG indeed does not work on convex-concave problems.

Shuffling does not resolve the problem.

− An explicit counterexample with divergent iterates

• On top of FF, adding a simple anchoring step

zk+1
0 ← zk

2n + zk
0

2

reduces the stochastic error by an order of magnitude (w.r.t. stepsize),

finally allowing a convergence rate of Õ(1/k1/3).
• The reduced error also benefits the convergence on strongly-convex-

strongly-concave problems, enjoying a rate of Õ(1/nk4).
− Without anchoring (i.e., with-replacement sampling or RR only),

the convergence rate is at best Ω(1/nk3).
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Main Results

Algorithm

Stochastic Extragradient with Flip-Flop Anchoring (SEG-FFA)

For each k = 0, 1, . . . : # epoch level outer loop

τk ∼ Unif(Sn) # sample random permutation

For each i = 1, . . . , n : # flip

zk
i = zk

i−1 − ηkFτk(i)

(
zk
i−1 −

ηk
2
Fτk(i)(z

k
i−1)

)
For each i = n+ 1, . . . , 2n : # flop

zk
i = zk

i−1 − ηkFτk(2n+1−i)

(
zk
i−1 −

ηk
2
Fτk(2n+1−i)(z

k
i−1)

)
zk+1
0 ← zk

2n + zk
0

2
# anchoring
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Main Results

Thank you for your attention.

Visit us at the Poster Session!
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