DynaMITE-RL: A Dynamic Model for Improved Temporal Meta-Reinforcement Learning

Anthony Liang¹, Guy Tennenholtz², Chih-wei Hsu², Yinlam Chow², Erdem Bıyık¹, Craig Boutilier² University of Southern California¹, Google Research²

USC University of Southern California

NeurIPS 2024

RL agents must efficiently model and adapt to *latent context changes*

Sessions are timesteps across which the latent context remains the same

Latent MDPs [1]: Latent **Dynamic Context Latent Partially Observed MDPs** information is fixed (POMDPs) [2]: Latent **MDPs**: Latent information information changes at every step evolves slowly over an episode

[1] Chades, Iadine, et al. "MOMDPs: A Solution for Modelling Adaptive Management Problems." *Proceedings of the AAAI Conference on Artificial Intelligence*. [2] Kaelbling, Leslie Pack, et al. "Planning and Acting in Partially Observable Stochastic Domains." Artificial Intelligence.

Multi-task Meta-RL Objective

Learn policy (π) that maximizes expected return under a distribution of tasks $(p(\mathcal{M}) = p(R, T))$

 $\mathcal{J}(\pi) = \mathbb{E}_{R,T} \left[\mathbb{E}_{\pi} \left[\sum_{t=0}^{H-1} \gamma^{t} R(s_{t}, a_{t}) \right] \right]$

Prior Work

- VariBAD [3] introduces a latent variable (*m*) to represent the true (R, T) of an MDP
- Introduces a learned approximate posterior, $q_{\phi}(m \mid \tau_{t})$
- Derive tractable lower bound (ELBO) using VI

[3] Zintgraf, Luisa, et al. "VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning." International Conference on Learning Representations (ICLR), 2020. 6

$\mathbb{E}_{\rho_{\pi}}\left[\log p_{\theta}(\tau)\right] \geq \mathbb{E}_{\rho_{\pi}}\left[\mathbb{E}_{q_{\phi}(m|\tau_{t})}\left[\log p_{\theta}(\tau \mid m)\right]\right] - D_{KL}\left[q_{\phi}(m \mid \tau_{t}) \mid p_{\theta}(m)\right]$ Trajectory Reconstruction Prior Regularization

[3] Zintgraf, Luisa, et al. "VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning." International Conference on Learning Representations (ICLR), 2020.

Decoder

$$i = 0, ..., H -$$

$$S_{i}, a_{i} \rightarrow p_{\theta}^{T} \rightarrow S_{i+1}$$

$$P_{\theta}^{(m \mid \tau_{:t})} \rightarrow p_{\theta}^{R} \rightarrow r_{i+1}$$

$$S_{i}, a_{i}, S_{i+1} \rightarrow p_{\theta}^{R} \rightarrow r_{i+1}$$

VariBAD performs poorly in a DLCMDP

VariBAD agent is unable to adapt to the changing latent contexts!

DynaMITE-RL

contexts and efficiently adapt in unseen environments

Key insights:

- 1. Timesteps in the same session share the same latent context

is a meta-RL algorithm that learns to *model the changing latent*

2. *Modeling latent dynamics* is important to adapt in DLCMDPs

3. Avoid reconstructing unnecessary and irrelevant information

Latent Consistency Objective

Enforce increase in information about the session's latent context with each new transition

Latent Belief Conditioning

Encoder

 S_t, a_{t-1}, r_t m_{i-1}, a_{t-1}

Condition posterior model on predicted latent belief from previous session

> VariBAD: $q_{\phi}(m \mid \tau_{t})$

DynaMITE-RL: $q_{\phi}(m_{t+1}, d_{t+1} \mid \tau_{:t}, m_{i-1}, d_{t})$

DynaMITE-RL Insight #3 Avoid reconstructing unnecessary and irrelevant information

Reward Decoder

VariBAD reconstructs the full trajectory

$$i = t_k 0, 1, \pm, H \dots, t_k$$

DynaMITE-RL Objective

Session-ELBO Objective

H-1 $\mathscr{L}_{DynaMITE-RL}(\theta,\phi) = \sum \left[\mathscr{L}_{session-ELBO,t}(\theta,\phi) + \beta \mathscr{L}_{consistency,t}(\phi)\right]$ t=0

Latent Consistency

Evaluation Environments

HalfCheetah AlternatingGoal Gridworld Assistive Gym-Reacher [4] ScratchItch [5] Velocity/Wind [4]

[4] Todorov, Emanuel, Tom Erez, and Yuval Tassa. "MuJoCo: A Physics Engine for Model-Based Control." 2012 IEEE/RSJ International Conference on Intelligent Robots and *Systems*, IEEE, 2012, pp. 5026–5033. [5] Erickson, Zackory, et al. "Assistive Gym: A Physics Simulation Framework for Assistive Robotics." IEEE International Conference on Robotics and Automation (ICRA), 2020.

Meta-RL Baselines RL², VariBAD, and BORel • Maintains a learned belief model

- **ContraBAR**
- •Learns belief state using contrastive learning **SecBAD** (most related to our work)
 - Proposes non-stationary latent MDP

• The latent contexts are sampled i.i.d., no dynamics function

DynaMITE-RL outperforms baselines in DLCMDPs

Qualitative Comparisons

Reacher

Left:VariBAD Right: DynaMITE-RL

HalfCheetah

ScratchItch

DynaMITE-RL is robust to varying levels of stochasticity

HalfCheetah-Vel

Conclusion

- We introduce **DLCMDPs**, a special instance of a POMDP where the latent context changes gradually
- We introduce **DynaMITE-RL** for efficient policy learning in DLCMDPs
- •We demonstrate better performance than state-of-the-art meta-RL baselines on challenging continuous control tasks in online and offline settings

Future / Ongoing Work Non-Markovian latent dynamics

- Hierarchical latent contexts
- Long-horizon tasks

 - Transformer-based encoder for posterior model

Maintaining belief over long histories, sparse reward settings

Thank you for listening!

USC University of Southern California

Google Research

