

Perplexity-aware Correction for Robust Alignment with Noisy Preferences

Keyi Kong^{1*} Xilie Xu^{2*} Di Wang³ Jingfeng Zhang⁴⁵ Mohan Kankanhalli²

¹Shandong University ²National University of Singapore
³King Abdullah University of Science and Technology
⁴The University of Auckland ⁵RIKEN Center for Advanced Intelligence Project
*Equal contribution
NeurIPS 2024

Large Language Models (LLMs)

LLMs have demonstrated extraordinary capabilities across a wide range of tasks.

Dataset	Metric	gpt-4o	o1-preview	01
Competition Math AIME (2024)	cons@64	13.4	56.7	83.3
	pass@1	9.3	44.6	74.4
Competition Code CodeForces	Elo	808	1,258	1,673
	Percentile	11.0	62.0	89.0
GPQA Diamond	cons@64	56.1	78.3	78.0
	pass@1	50.6	73.3	77.3
Biology	cons@64	63.2	73.7	68.4
	pass@1	61.6	65.9	69.2
Chemistry	cons@64	43.0	60.2	65.6
	pass@1	40.2	59.9	64.7
Physics	cons@64	68.6	89.5	94.2
	pass@1	59.5	89.4	92.8
МАТН	pass@1	60.3	85.5	94.8

Table from https://openai.com/index/learning-to-reason-with-llms/

Large Language Models (LLMs)

LLMs may generate harmful and helpless content.

Noisy Preferences

Alignment methods are essential to ensure that large language models generate helpful and harmless content aligned with human preferences.

Noisy Preferences

Noisy preferences in datasets can spoil the alignment.

Motivation

Existing methods mitigate the issue of noisy preferences from the loss function perspective by adjusting the alignment loss based on a clean validation dataset.

$$egin{aligned} \mathcal{G}_{ ext{cDPO}}(x, ilde{y}_w, ilde{y}_l; heta) &= (1-arepsilon')\mathcal{G}_{ ext{DPO}}(x, ilde{y}_w, ilde{y}_l; heta) + arepsilon'\mathcal{G}_{ ext{DPO}}(x, ilde{y}_l, ilde{y}_w; heta), \ \mathcal{G}_{ ext{rDPO}}(x, ilde{y}_w, ilde{y}_l; heta) &= rac{(1-arepsilon')\mathcal{G}_{ ext{DPO}}(x, ilde{y}_w, ilde{y}_l; heta) - arepsilon'\mathcal{G}_{ ext{DPO}}(x, ilde{y}_l, ilde{y}_w; heta), \ 1-2arepsilon' \end{aligned}$$

.....

estimated using a clean validation set

Motivation

Existing methods mitigate the issue of noisy preferences from the loss function perspective by adjusting the alignment loss based on a clean validation dataset.

How to better reduce the impact of noisy preferences on alignment?

We propose perplexity-aware correction from the data perspective for robust alignment which detects and corrects noisy preferences.

PerpCorrect: Perplexity-aware Correction

$$PPLDiff(x, \tilde{y}_{w}, \tilde{y}_{l}; \theta) = \log PPL([x; \tilde{y}_{w}]; \theta) - \log PPL([x; \tilde{y}_{l}]; \theta),$$
$$PPL(s; \theta) = \exp\left(-\frac{1}{t} \sum_{i=1}^{t} \log \pi_{\theta} (s_{i}|s_{
$$PPL([x; y_{w}]; \theta) < PPL([x; y_{l}]; \theta)$$$$

clean preferences: $(x, \tilde{y}_w, \tilde{y}_l) = (x, y_w, y_l)$, PPL $([x; \tilde{y}_w]; \theta) <$ PPL $([x; \tilde{y}_l]; \theta)$ noisy preferences: $(x, \tilde{y}_w, \tilde{y}_l) = (x, y_l, y_w)$, PPL $([x; \tilde{y}_w]; \theta) >$ PPL $([x; \tilde{y}_l]; \theta)$

Intuitively, clean preferences have lower PPLDiff values than noisy preferences.

PerpCorrect: Perplexity-aware Correction

Robust Alignment via PerpCorrect

Algorithm 1 Robust Alignment via Perplexity-aware Correction (PerpCorrect)

- 1: **Input:** Noisy training dataset \hat{D} , clean validation dataset \mathcal{D}_{val} , and pre-trained LLM π_{θ} parameterized by θ
- 2: **Output:** Robust alignment model π_{θ}
- 3: // Stage I: Supervised fine-tuning (SFT)
- 4: $\pi_{\theta} \leftarrow$ Supervised fine-tuned LLM π_{θ} . (Details in Appendix C.3)
- 5: // Stage II: Perplexity-aware correction using the surrogate LLM
- 6: $\tilde{\mathcal{D}}_{\text{denoised}}, \varepsilon'_{\text{denoised}} \leftarrow \text{Perplexity-aware Correction} (\pi_{\theta}, \tilde{\mathcal{D}}, \mathcal{D}_{\text{val}})$ (Details in Algorithm 2)
- 7: // Stage III: Alignment with denoised dataset
- 8: $\pi_{\theta} \leftarrow \text{Aligned LLM } \pi_{\theta} \text{ using } \tilde{\mathcal{D}}_{\text{denoised}} \text{ and } \varepsilon'_{\text{denoised}} \text{ (Details in Appendix C.3)}$

Empirical Results

	Evaluated using different series of alignment methods									
۸s	Table 1: Average reward accuracy of DPO se-ries alignment methods using Llama2-7B on theGolden HH dataset.			Table 2: Average reward accuracy of PPO se-ries alignment methods using Llama2-7B on theGolden HH dataset.						
	Method	$\frac{10 \text{Proportion of noisy preferences (\%)}}{10 20 30 40}$			Method	$\frac{10}{10} \frac{\text{Proportion of noisy preferences (\%)}}{30}$				
	Vanilla DPO	92.53%	82.62%	68.50%	53.15%	Vanilla PPO	96.64%	92.71%	90.21%	86.29%
e e	cDPO	96.04%	90.85%	83.23%	65.60%	cPPO	96.18%	93.63%	90.62%	88.02%
٦. ق	rDPO	96.65%	95.22%	93.90%	90.45%	rPPO	95.92%	93.73%	92.05%	90.62%
i fi	PerpCorrect-DPO	97.51%	96.24%	95.53%	94.92%	PerpCorrect-PPO	96.38%	94.04%	93.99%	93.17%
ed using	Table 3: Average reward accuracy of DPO series Table 4: Average reward accuracy of DPO alignment methods using phi-2 on the Golden HH alignment methods using phi-2 on the O dataset.						PO series DASST1			
nat	Method	Propor 10	tion of nois $\frac{20}{20}$	sy preferen 30	$\frac{\cos{(\%)}}{40}$	Method	Propor 10	rtion of nois	sy preference 30	$\frac{\cos(\%)}{40}$
alı	Vanilla DPO	93.19%	85.57%	73.07%	54.98%	Vanilla DPO	66.94%	62.61%	58.44%	52.42%
	cDPO	97.21%	92.63%	81.05%	66.72%	cDPO	67.30%	61.44%	54.87%	49.21%
<u>ш</u>	rDPO	96.49%	95.73%	93.34%	84.55%	rDPO	63.95%	59.47%	56.45%	45.20%
	PerpCorrect-DPO	98.17%	97.05%	97.66%	96.39%	PerpCorrect-DPO	71.34%	69.04%	68.27%	68.49 %
Evaluated using different datasets										

PerpCorrect can achieve better alignment performance.

Empirical Results

Method	Proportion of noisy preferences (%)					
Method	10	20	30	40		
DPO	92.53%	82.62%	68.50%	53.15%		
PerpCorrect-DPO	97.51%	96.24%	95.53%	94.92%		
Δ	+ 4.98 %	+13.62%	+27.03%	+41.77%		
SLiC	96.70%	87.75%	76.17%	58.59%		
PerpCorrect-SLiC	96.95%	95.02%	95.38%	94.61%		
Δ	+0.25%	+7.27%	+19.21%	+36.02%		
IPO	98.07%	92.73%	79.17%	61.64%		
PerpCorrect-IPO	98.73%	97.66%	97.82%	97.56%		
Δ	+0.66 %	+4.93%	+18.65%	+35.92%		
cDPO	96.04%	90.85%	83.23%	65.60%		
PerpCorrect-cDPO	98.12%	97.31%	94.97%	88.36%		
Δ	+2.08%	+6.46 %	+11.74%	+22.76%		
rDPO	96.65%	95.22%	93.90%	90.45%		
PerpCorrect-rDPO	95.99%	95.02%	94.77%	95.73%		
$$ Δ	-0.66%	-0.20%	+0.87 %	+5.28%		

Table 5: Average reward accuracy and improvements of the offline and robust alignment methods, as well as those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset.

PerpCorrect has good compatibility with other alignment methods.

DPO: [Rafailov et al., NeurIPS 2023] SLiC: [Zhao et al.] IPO: [Azar et al., AISTATS 2024] cDPO: [Eric Mitchell] rDPO: [Chowdhury et al., ICML 2024]

NeurIPS 2024

Our research proposes a method called perplexity-aware correction (PerpCorrect), as an effective approach for robust alignment with noisy preferences.

References

- Keyi Kong and Xilie Xu and Di Wang and Jingfeng Zhang and Mohan Kankanhalli. "Perplexity-aware Correction for Robust Alignment with Noisy Preferences." NeurIPS 2024.
- Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn. "Direct Preference Optimization: Your Language Model is Secretly a Reward Model." NeurIPS 2023.
- Yao Zhao and Rishabh Joshi and Tianqi Liu and Misha Khalman and Mohammad Saleh and Peter J. Liu. "SLiC-HF: Sequence Likelihood Calibration with Human Feedback."
- Eric Mitchell. "A note on DPO with noisy preferences & relationship to IPO."
- Sayak Ray Chowdhury and Anush Kini and Nagarajan Natarajan. "Provably Robust DPO: Aligning Language Models with Noisy Feedback." ICML 2024.